In this course, we will introduce basic python concepts and explore their usage in financial econometrics. Statistical modelling of any kind always requires data. Thus, being able to handle raw data sets, i.e. data cleaning, data structuring, etc., is an essential task which has to be done at the beginning of every project. The first part of the course will focus on the most popular tools that python offers (pandas, numpy, matplotlib, datetime, etc.) in order to tackle the aforementioned tasks .
The second part of the course introduces financial time series. Here, we will discuss their unique characteristics also known as "stylized facts" and different approaches on how to model them, in particular ARMA and GARCH processes will be of interest. If time permits, we will also peek into quantitative risk management and portfolio optimization.
The course starts on the 10th of October.
- Enseignant: Dennis Mao
Zusatzprüfung "Einführung in die statistische Software (R)" für Studierende nach PO 2010
Einschreibeschlüssel: statsoftRPO2010
- Enseignant: Andreas Bender
- Enseignant: Philipp Kopper
- Enseignant: Julia Niebisch
Ausgewählte Themen der nichtparametrischen und der robusten Statistik
Das Seminar behandelt ausgewählte Themen der nichtparametrischen bzw.
verteilungsfreien Statistik (beispielsweise statistische Tests) sowie
Methoden der robusten Statistik (z.B. Ausreißererkennung bzw.
Verallgemeinerungen des Medians mit Hilfe des Konzepts der Datentiefe
oder robuste L-Momente)
Seminar geblockt am Ende des Semesters (nach Ende der Vorlesungszeit)
- Enseignant: Georg Schollmeyer
- Enseignant: Christian Müller
- Enseignant: Mara Stadler
Blockveranstaltung: 15.-18. August und 22.-25. August (9am-12pm; 2pm-5pm)
Einschreibeschlüssel: DCQD2022
- Enseignant: Jacob Beck
- Enseignant: Carla Fuchs
- Enseignant: Anna-Carolina Haensch
- Enseignant: Felix Henninger
- Enseignant: Frauke Kreuter
- Enseignant: Frauke Kreuter
- Enseignant: Joseph Sakshaug
Ziel dieses Kurses ist es, Studierenden elementare Techniken des wissenschaftlichen Arbeitens in der Statistik näher zu bringen.
Zielgruppe:
Bachelorstudierende der Statistik ab dem vierten Fachsemester und interessierte Masterstudierende der Statistik.
Dozentin: Cornelia Fütterer
Erster Termin:
27.04.2022 von 08:30-10:00 Uhr
Weitere Termine nach Absprache zu Kursbeginn.
ECTS-Punkte:
Dieser Kurs ist ein Angebot zur Vorbereitung auf Seminare und Abschlussarbeiten. Es können daher keine ECTS-Punkte erworben werden.
Einschreibeschlüssel: wissArb22
- Enseignant: Cornelia Fütterer
- Der Einschreibeschlüssel ist StoSta22
- Vorlesungen
aus vorigen Semestern auch als aufgezeichnete Videos bei LMUcast (s.u.) verfügbar. Multiple Choice Quizzes
zur Selbstkontrolle auf moodle.
- Für die Übungen gibt es Musterlösungen als PDF und Fragestunden zur Übung in vorraussichtlich 2 Gruppen Mittwochs und Donnerstags.
Termine
Vorlesung:
Di & Do 12-14 @ M010 (Hgb)
Übung/Fragestunde:
Mi 12-14 (A 014 HGB), Mi 14-16 (A 014 HGB)
- Enseignant: Yusuf Sale
- Enseignant: Fabian Scheipl
- Enseignant: Michael Windmann
General Information
Overview
Deep Metric learning aims to learn effective distance or similarity measures between arbitrary objects with the success of deep learning. The statistical deep metric learning goal is to learn statistical representation based on data distribution, density function and maps objects into an embedded space with more statistical information. It’s an important topic in both natural language processing and computer vision and has been applied to a variety of tasks, including Grammar correction, and fine-grained image retrieval, object ranking, etc.
In this seminar, we will learn about the theory of deep metric learning and will review some state-of-the-art methods. We will offer different topics with different applications (i.e. NLP, CV, bioinformatics) for a variety of tasks (i.e. clustering, representation learning, density modeling, ranking, information retrieval, etc). We plan to work on the extension of three categories:
- Contrastive Approaches: Contrastive Loss, Triplet Loss, Improving the Triplet Loss
- Moving Away from Contrastive Approaches: Center Loss, Sphere Face
- State-of-the-art Approaches: CosFace, ArcFace, AdaCos Sub-Center ArcFace, ArcFace with Dynamic Margin.
As part of the seminar, you will also apply one of the frameworks to a given real-world problem. This means every participant will be asked to prepare an oral presentation about a current technique and to write up a reproducible case study of actual data analysis in a deep metric learning framework, in addition to peer-reviewing the (theoretical and practical) work of a colleague.
Recommended prerequisites: Deep learning; Python, PyTorch, TensorFlow, We would also hold the seminar in English and also allow students from other courses (especially DS students)
Key: Seminar_DML
Seminar: Blocked towards the end of the semester,
Kick-off and Lecture:29.04.2022, 9:00- 11:00
Weekly Meeting: Fridays 9:00- 11:00
Zoom:
Kurs | Zeit | Ort |
---|---|---|
Grundkurs | Mo, 16.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Grundkurs | Di, 17.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Grundkurs | Mo, 23.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Grundkurs | Di, 24.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Grundkurs | Mo, 30.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Grundkurs | Di, 31.05., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Aufbaukurs | Mo, 13.06., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Aufbaukurs | Di, 14.06., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Aufbaukurs | Mo, 20.06., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
Aufbaukurs | Di, 21.06., 16:00 - 19:00 | Ludwigstraße 28, IuK-Pool (207) |
- Enseignant: Alexander Bauer
- Enseignant: Kai Becker
- Enseignant: Patrick Kaiser
- Enseignant: Rebekka Schade
- Enseignant: Karl Schulte
- Enseignant: Maximilian Weigert
- Enseignant: Lisa Xu
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Di, 14:15-15:45 | Geschw.-Scholl-Pl. 1 (D) - D 209 | Hoffmann/Boulesteix | 26.04.22 |
Übung | Fr, 14:15-15:45 | Geschw.-Scholl-Pl. 1 (D) - D 209 | Rehms | 06.05.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "StatisticalPitfalls22"
- Enseignant: Anne-Laure Boulesteix
- Enseignant: Sabine Hoffmann
- Enseignant: Raphael Rehms
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Mo, 9:15-11:45 | Geschw.-Scholl-Pl. 1 (E) / E 004 | Hoffmann/Boulesteix | 25.04.22 |
Übung | Di, 10:15-11:45 | Geschw.-Scholl-Pl. 1 (M) - M 109 | Rehms | 03.05.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "DAS22"
- Enseignant: Anne-Laure Boulesteix
- Enseignant: Nicole Ellenbach
- Enseignant: Sabine Hoffmann
- Enseignant: Hannah Kümpel
- Enseignant: Raphael Rehms
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Mo, 12:15-13:45 | Geschw.-Scholl-Pl. 1 (A) / A 125 | Hoffmann | 25.04.22 |
Vorlesung | Di, 10:15-11:45 | Geschw.-Scholl-Pl. 1 (A) / A 021 | Hoffmann | 26.04.22 |
Übung | Do, 12:15-13:45 | Geschw.-Scholl-Pl. 1 (A) - A 022 | Garces Arias | 28.04.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "Multi2022"
- Enseignant: Nicole Ellenbach
- Enseignant: Esteban Garces Arias
- Enseignant: Sabine Hoffmann
- Enseignant: Raphael Rehms
Login: please contact Fabian Scheipl
Dates & Overview
Kickoff: tba
Target groups: Statistics B.A.
Course Description
So, classical statistics mostly answers questions about associations or correlations between measured data. However, many – if not most – important questions are not about mere associations (“Does B occur more or less frequently together with A?”), but about actual causes (“Is B caused by A?”)."In many applications of statistics, a large proportion of the questions of interest are fundamentally questions of causality rather than simply questions of description or association. For example, a medical researcher may wish to find out whether a new drug is effective against a disease. An economist may be interested in uncovering the effects of a job-training program on an individual’s employment prospects, or the effects of a new tax or regulation on economic activity. A sociologist may be concerned about the effects of divorce on children’s subsequent education."
G. Imbens
In this seminar, we’ll learn about the core statistical and philosophical concepts related to causal inference and explore some of the techniques that have been developed to answer causal questions based on data.
- Enseignant: Susanne Dandl
- Enseignant: Moritz Herrmann
- Enseignant: Gunnar König
- Enseignant: Fabian Scheipl
Termine
- Vorlesung: Mittwoch, 14:00 - 16:00 Uhr,
- Übungen: Freitag, 8:00 - 10:00 Uhr
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet "oek_s22".
- Enseignant: Robert Czudaj
- Enseignant: Philipp Schiele
Die Veranstaltung "Programmieren mit Statistischer Software (R)" wendet sich an Studierende im Bachelor Statistik. Sie baut auf den Veranstaltungen "Einführung in die Statistische Software" (1. Semester) und "Statistische Software" (2. Semester) auf.
Die Veranstaltung findet vom 25.04.2022 ausschließlich online statt und verläuft nach dem Inverted Classroom Prinzip.
Einschreibeschlüssel: progr2022
- Enseignant: Andreas Bender
- Enseignant: Lukas Burk
- Enseignant: Sven Lorenz
- Enseignant: Julia Niebisch
Syllabus
- Introduction to Stochastic Processes
- Autoregressive Moving Average Processes
- Estimation of Vector ARMA Models
- Prediction
- Testing for Causality
- Innovations Accounting
- Structural VAR
Intended audience: Advanced students and PhD students in econometrics, statistics, VWL, BWL, mathematics or computer science.
Prerequisites: Profound knowledge in matrix-algebra and econometrics (econometrics I) or statistics (linear models). Basic knowledge in univariate time series analysis is not demanded but of advantage.
Time Schedule
- Enseignant: Robert Czudaj
- Enseignant: Nurzhan Sapargali
Key: reg-cor-dat
Course kick-off on 19.04. with an introductory in-person lecture.
The remainder of the semester will be inverted classroom style.
Lecture Q&A / Exercise class (Scheipl/Sapargali) |
Thursday |
14:15-15:45 |
Schellingstr. 3 (S) - S 001 |
Format:
You are expected to come prepared for both the Q&As and exercise classes -- you've watched the lecture videos, you've reviewed the slides/exercise sheets, you've asked chatGPT to explain the parts you found confusing, you've done the self-assessment quizzes, and you've posted questions you would like to see
addressed during the session in the Moodle Forum.
- Enseignant: Giacomo De Nicola
- Enseignant: Fabian Scheipl
- Enseignant: Giacomo De Nicola
- Enseignant: Cornelius Fritz
- Enseignant: Marius Mehrl
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung (14 tägig) | Mo, 14:15-15:45 | Geschw.-Scholl-Pl. 1 (M) - M 018 | Schollmeyer, Windmann | 25.04.22 |
Vorlesung | Do, 12:15-13:45 | Geschw.-Scholl-Pl. 1 (E) - E 004 | Schollmeyer, Windmann | 28.04.22 |
Vorlesung | Do, 10:15-11:45 | Geschw.-Scholl-Pl. 1 (E) - E 004 | Schollmeyer, Windmann | 28.04.22 |
Übung 1 | Di, 08:15-09:45 | Schellingstr. 3 (S) - S 005 | Wicht | 03.05.22 |
Übung 1 (14 tägig) | Di, 12:15-13:45 | Schellingstr. 3 (S) - S 005 | Wicht | 03.05.22 |
Übung 2 | Mi, 10:15-11:45 | Geschw.-Scholl-Pl. 1 (A) - A 016 | Blocher | 04.05.22 |
Übung 2 (14 tägig) | Mi, 08:15-09:45 | Geschw.-Scholl-Pl. 1 (A) - A 016 | Blocher | 04.05.22 |
Tutorium | Di, 14:15-15:45 | Schellingstr. 3 (S) - S 005 | Musiol | 12.05.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "s22_stat2_PO2010"
- Enseignant: Hannah Blocher
- Enseignant: Sarah Musiol
- Enseignant: Georg Schollmeyer
- Enseignant: Leonie Wicht
- Enseignant: Michael Windmann
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Di, 08:15-09:45 | Geschw.-Scholl-Pl. 1 (D) - D 209 | Nagler | 26.04.22 |
Vorlesung | Mi, 10:15-11:45 | Schellingstr. 3 (S) - S 005 | Nagler | 27.04.22 |
Übung | Mo, 16:15-17:45 | Geschw.-Scholl-Pl. 1 (D) - D 209 | Blocher | 25.04.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "linalg"
- Enseignant: Hannah Blocher
- Enseignant: Thomas Nagler
Schedule
Time | Lecturer | Begin | |
---|---|---|---|
Exercise course |
Wednesday, 08:15 - 9:45 |
Sapargali |
04.05.2022 |
Lecture |
Tuesday, 12:15 - 13:45 |
Prof. Dr. Heumann |
26.04.2022 |
Tutorium |
Friday, 08:15 - 09:45 |
Eleftheria |
29.04.2022 |
Lecture |
Friday, 10:15 - 11:45 |
Prof. Dr. Heumann |
29.04.2022 |
Enrollment Key
- The enrollment key is "stat_inf_ss22"
- Enseignant: Christian Heumann
- Enseignant: Eleftheria Papavasiliou
- Enseignant: Nurzhan Sapargali
- Enseignant: Christian Scholbeck
Key: Fairness2022
- Enseignant: Anna-Carolina Haensch
- Enseignant: Christoph Kern
- Enseignant: Frauke Kreuter
- Enseignant: Frauke Kreuter
Zielgruppe: Bachelorstudierende der Statistik (4. Semester)
Termine - Vorlesung
Dienstag | 16:00 c.t. - 18:00 Uhr | Geschw.-Scholl-Pl. 1 (E) - E 004 |
Mittwoch | 12:00 c.t. - 14:00 Uhr | Geschw.-Scholl-Pl. 1 (E) - E 004 |
Start | Di., 26.04.2022 |
Termine - Übungen
Mittwoch | 14:00 c.t. - 16:00 Uhr | Geschw.-Scholl-Pl. 1 (M) - M 105 |
Donnerstag | 10:00 c.t. - 12:00 Uhr | Schellingstr. 3 (S) - S 007 |
Start | Mi., 04.05.2022 |
Einschreibeschlüssel: expoFam-2022
- Enseignant: Cornelia Gruber
- Enseignant: Michael Kobl
- Enseignant: Dominik Kreiß
- Enseignant: Georg Schollmeyer
- Enseignant: Benjamin Sischka
Der Einschreibeschlüssel lautet DT2022
- Enseignant: Thomas Augustin
- Enseignant: Christoph Jansen
- Enseignant: Georg Schollmeyer
Der Einschreibeschlüssel lautet Mathematik II
- Enseignant: Christoph Jansen
- Enseignant: Georg Schollmeyer
This seminar addresses the balance between the social benefits of data access and use for research, and the interests of individual privacy and data confidentiality. The challenge faced by social science and medical researchers, relative to data users in other contexts, is the need to compute accurate statistics from sensitive databases, share their results broadly, and facilitate scientific review and replication. In this seminar, we will take an interdisciplinary look at privacy and sensitivity, covering privacy attitudes and privacy law in Europe as well as strategies to ensure privacy and the ways statistical agencies have made sensitive data available: tabular data, public use files, and, more recently, synthetic data.
Time: Tuesdays, 04:15-05:45 pm.
Enrollment: Students who wish to attend will be manually enrolled in the seminar by the instructors.
Please contact Leah von der Heyde (leah.vonderheyde@stat.uni-muenchen.de) for questions.
- Enseignant: Anna-Carolina Haensch
- Enseignant: Frauke Kreuter
- Enseignant: Frauke Kreuter
- Enseignant: Marcel Neunhoeffer
- Enseignant: Leah von der Heyde
Termine:
Termin | Ort | Beginn | |
---|---|---|---|
Vorlesung | Mi, 14:15-15:45 | A 021 | 27.04.22 |
Vorlesung | Do, 12:15-13:45 (14-tägig) |
A 021 | 28.04.22 |
Übung |
Mo, 12:15-13:45 | A 021 |
02.05.22 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "stat4nf2022"
- Enseignant: Julian Rodemann
- Enseignant: Malte Schierholz
Over the past two years, the CODAG (COVID-19 Data
Analysis Group) at LMU has conducted several data analyses and regularly
published them in reports
(https://www.covid19.statistik.uni-muenchen.de/newsletter/index.html).
In this seminar, selected analyses will be presented and discussed.
Since many of them were performed under time pressure in a difficult
environment and with incomplete information, it is of interest to look
at those analyses again with a critical focus. Furthermore, numerous
other data analyses have been disseminated via social media by various
actors, which often come to dubious conclusions. Such examples will also
be discussed critically in the seminar.
Target group: Bachelor and Master in Statistics, Master in Epidemiology
Seminar type: Block-type and in-person seminar
ECTS: 6 Bachelor, 9 Master, 9 Epidemiology
Language: The seminar will be held in English.
Advisors: Helmut Küchenhoff, Göran Kauermann, Ursula Berger, André Klima, Yeganeh Khazaei, Giacomo De Nicola, Maximilian Weigert
Key: CODAG2022
- Enseignant: Ursula Berger
- Enseignant: Giacomo De Nicola
- Enseignant: Göran Kauermann
- Enseignant: André Klima
- Enseignant: Helmut Küchenhoff
- Enseignant: Maximilian Weigert
The courses EMOS A and EMOS B provide an overview of central concepts of official statistics from a methodological perspective. Topics discussed in EMOS B include national and international poverty measurement, dynamic indicators of economic statistics, basic concepts and methods of population statistics/demography, special domain statistics (household, cause of death, and business statistics), statistical literacy, linkage and matching of data sets.
A combination of lecture, tutorial, and inverted classroom elements with discussion sessions will be offered. It is also expected that several representatives of official statistics will again enrich the event with guest lectures.
This course is a compulsory course for all students who want to obtain the EMOS (European Master in Official Statistics) supplementary certificate; all other master's students can flexibly have 6 ECTS credits recognized. Previous attendance of EMOS A (always offered in the winter semester) is not necessary.
Enrollment Key: emosb
- Enseignant: Dominik Kreiß
Instructor: Frauke Kreuter
The seminar will be held in English on Wednesdays from 10:00 to 11:30 over zoom. Please contact anna-carolina.haensch@stat.uni-muenchen.de with any questions.
Key: SoDa2022
- Enseignant: Anna-Carolina Haensch
- Enseignant: Frauke Kreuter
- Enseignant: Frauke Kreuter
- Enseignant: Emilio Dorigatti
- Enseignant: Chris Kolb
- Enseignant: Yawei Li
- Enseignant: Mina Rezaei
- Enseignant: David Rügamer
- Enseignant: Tobias Weber
Dieser Kurs ist für Bachelor-Student:innen der Statistik vorgesehen und wird auf Deutsch unterrichtet.
Wir bauen Grundlagen in den geläufigen Anwendungen der Regressionsanalysen auf und führen diese in R aus.
Bei weiteren Fragen kontaktieren Sie:
Kuechenhoff, Helmut <kuechenhoff@stat.uni-muenchen.de>
Wiegrebe, Simon <simon.wiegrebe@stat.uni-muenchen.de>
Rave, Martje <martje.rave@stat.uni-muenchen.de>
Time | Type of lesson |
Instructor | Note |
---|---|---|---|
Mi 10:00-12:00 |
Vorlesung | Prof. Dr. Helmut Kuechenhoff | Pro Woche sollten beide Vorlesungen besucht werden. |
Do 08:00-10:00 |
Vorlesung | Prof. Dr. Helmut Kuechenhoff | Pro Woche sollten beide Vorlesungen besucht werden. |
Di 10:00-12:00 |
Übung | Wiegrebe | Pro Woche sollte eine Übung besucht werden. |
Do 14:00-16:00 |
Übung |
Rave | Pro Woche sollte eine Übung besucht werden. |
Fr 14:00-16:00 |
Tutorial | Langer | |
Einschreibeschlüssel: LiMo_22
- Enseignant: Andreas Bender
- Enseignant: Helmut Küchenhoff
- Enseignant: Felix Langer
- Enseignant: Martje Rave
- Enseignant: Simon Wiegrebe
Description
The
lecture deals with theoretical and practical concepts from the fields of
statistical learning and machine learning. The main focus is on
predictive modeling / supervised learning. The tutorial applies these
concepts and methods to real examples for illustration purposes.
Organization
- Class: Wednesday, 12:15 - 13:45
- Location: HGB - A 119
Enrolment Key
SLSS22
Target Audience
- Statistics (Methods/Bio/WISO)
- Data Science MSc.
- Enseignant: Ludwig Bothmann
Person: Dr. Cornelia Oberhauser
SAS-Kurs als 5-tägiger Blockkurs in den Semesterferien
Termine:
Tag | Uhrzeit | Raum | |
---|---|---|---|
Mo 22.08.2022 | Vorlesung | 9:15 - ca. 12:15 | online über Zoom |
Übung | 13:15 - 17:00 | online über Zoom | |
Di 23.08.2022 | Vorlesung | 9:15 - ca. 12:15 | online über Zoom |
Übung | 13:15 - 17:00 | online über Zoom | |
Do 25.08.2022 | Vorlesung | 9:15 - ca. 12:15 | online über Zoom |
Übung | 13:15 - 17:00 | online über Zoom | |
Mo 29.08.2022 | Vorlesung | 9:15 - ca. 12:15 | online über Zoom |
Übung | 13:15 - 17:00 | online über Zoom | |
Di 30.08.2022 | Vorlesung | 9:15 - ca. 12:15 | online über Zoom |
Übung | 13:15 - 17:00 | online über Zoom |
Gastschlüssel
- Der Gastschlüssel lautet: "saskurs2022"
- Der Selbsteinschreibeschlüssel lautet: "saskurs2022"
- Enseignant: Cornelia Oberhauser
This course is closely related
to the Generalized Regression Models (Generalisierte Regressions/GRM)
course, also taught by Prof. Dr. Kuechenhoff. This course is, however,
taught in English and designed for students currently attaining their
master’s degree in statistics.
We will take a closer look at
generalized models, mixed models, Bayesian approaches, generalized
additive models, survival analysis and error models. This is not an
exhaustive list, but should provide you with a general idea of the
contents of the course.
If you have questions regarding the course, contact:
Kuechenhoff, Helmut <kuechenhoff@stat.uni-muenchen.de>
Rave, Martje <martje.rave@stat.uni-muenchen.de>
Time | Type of lesson |
Instructor | Note |
---|---|---|---|
Monday 14:00-16:00 |
Lecture | Prof. Dr. Helmut Kuechenhoff | Both lectures should be attended (weekly rhythm) |
Thursday 12:00-14:00 |
Lecture | Prof. Dr. Helmut Kuechenhoff | |
Monday 10:00-12:00 |
Workshop | Will not be needed | |
Friday 14:00-16:00 |
Workshop |
Rave | One work shop per week should be attended (weekly rhythm) |
Thursday 08:00-10:00 |
Tutorial | TBA | All tutorials should be attended (weekly rhythm) |
Enrolment key: Stat_Model_ss_2022
- Enseignant: Helmut Küchenhoff
- Enseignant: Martje Rave
- Enseignant: Benjamin Sischka
- Enseignant: Dielle Syliqi
- This lecture covers the basics of Bayesian statistics and its practical applications
- The lecture is held in English. The first part of the lecture will be online, the second part in presence.
- The course may be taken by students with a minor in "Statistik" or "Statistik und Data Science", as well as a major in "Statistik" (Prüfungsordnung 2010).
Einschreibeschlüssel
Thomas
Dates
- Friday 12-16
- Enseignant: Zahra Aminifarsani
- Enseignant: Volker Schmid
Schedule
- Class: Monday, 10 am - 12 pm
- Location: Geschw.-Scholl-Pl. 1 (D) - D 209
Enrollment key
- The enrollment key is I2ML
- Enseignant: Ludwig Bothmann
- Enseignant: Lisa Wimmer
Description: This course directly builds on the “Introduction to ML” and the “Supervised Learning” lecture. It introduces advanced machine learning concepts for some selected topics that were not covered in the two aforementioned lectures. The topics are organized into two parts:
- The first part introduces several model-agnostic interpretation techniques that produce local (e.g., observation-wise) or global explanations for ML models fitted on tabular data.
- The second part focuses on further advanced ML topics such as imbalanced, multi-label, and cost-sensitive classification, uncertainty quantification, fairness in ML, and online learning.
Time: Monday, 12:15 - 13:45 and Thursday, 10:15 - 11:45
Prerequisites: Supervised Learning or Predictive Modeling (Fortgeschrittene Computerintensive Methoden) or a similar lecture (see here for a list of topics, most of which you should know as a prerequisite for this course).
- Enseignant: Viktor Bengs
- Enseignant: Susanne Dandl
- Enseignant: Gunnar König
Schedule
- Lecture: Tuesday, 10 - 12 c.t.
- Exercise: Friday, 10 - 12 c.t.
Covid19
- Due to the pandemic situation, the course will very likely be held via Zoom.
Enrollment key
- The enrollment key is learnDL
- Enseignant: Hüseyin Gündüz
- Enseignant: Mina Rezaei
- Enseignant: David Rügamer
- Enseignant: Emanuel Sommer
Der Einschreibeschlüssel für den Kurs ist FortStatSoftNF. Falls Sie Fragen haben, wenden Sie sich an anna-carolina.haensch@stat.uni-muenchen.de.
Vorlesung | Freitag | 14 | 16 | |
Übung | Freitag | 16 | 18 |
- Enseignant: Jacob Beck
- Enseignant: Anna-Carolina Haensch
- Enseignant: Felix Henninger
- Enseignant: Jan Simson
Der Einschreibeschlüssel für den Kurs ist Stat2SozNF. Bei Fragen wenden Sie sich bitte an anna-carolina.haensch@stat.uni-muenchen.de
Vorlesung | Montag | 12 | 14 | |
Vorlesung | Donnerstag | 12 | 14 | |
Parallelübung 1 | Dienstag | 16 | 18 | |
Parallelübung 2 | Mittwoch | 14 | 16 |
- Enseignant: Jacob Beck
- Enseignant: Anna-Carolina Haensch
- Enseignant: Alexandra Holzmann
- Enseignant: Ilija Spasojevic
Syllabus:
- Overview
- Fundamentals and Properties of Stochastic Processes
- Univariate ARIMA-Processes
- Estimation and Forecasting of ARIMA-Models
- Univariate GARCH-Models + Extensions
- Selected aspects: Long Memory und Fractional Differencing, Threshold-Models
Intended audience: Advanced bachelor and master students of statistics, mathematics, computer science (Informatik), economics and business administration.
Prerequisites: Solid mathematical foundations (analysis and linear algebra), basic knowledge in econometrics (econometrics 1) or statistics (linear models).
Record of Achievement:
- Enseignant: Dennis Mao
Termine
- Freitag, 09 - 12 s.t.
- Enseignant: Matthias Aßenmacher
- Enseignant: Ludwig Bothmann
- Enseignant: Omid Charrakh
- Enseignant: Tobias Weber
Important Dates:
Termin | Ort | |
---|---|---|
Preliminary meeting (online) | 30.03.22, 10-12 c.t. | |
Interim Presentations | 09.05.22, 16-18 c.t. | |
Presentations | 20.07.22, 10-16 s.t. | |
Presentations | 21.07.22, 10-16 s.t. | |
Submission deadline | 31.08.22, 23.59 CET |
Enrollment key:
Will be announced at the preliminary meeting.
Note:
This seminar is subject to the regular application process for seminars at the Department of Statistics.
- Enseignant: Matthias Aßenmacher
- Enseignant: Jann Goschenhofer
- Enseignant: Christian Heumann
- Enseignant: Rasmus Hvingelby
- Enseignant: Daniel Schalk
In this seminar, we will learn about the theory of deep unsupervised learning and will review some state-of-the-art methods. We will offer different topics with different applications (i.e. NLP, CV, bioinformatics) for a variety of tasks (i.e. clustering, representation learning, density modeling, etc). As part of the seminar, you will also apply one of the frameworks to a given real-world problem and recent [live] challenges. This means every participant will be asked to prepare an oral presentation about a current technique and to write up a reproducible case study of actual data analysis in an unsupervised DL framework, in addition to peer-reviewing the (theoretical and practical) work of a colleague.
Enrollment key: seminar_udl
First meeting: 29.04.2022
- Enseignant: Rasmus Hvingelby
- Enseignant: Mina Rezaei
Termine
Termin | Ort | Person | |
---|---|---|---|
Vorlesung | Mo 12–14 | S 004 | Volker Schmid |
Vorlesung | Do 10–12 | A 030 | Volker Schmid |
Übung 1 | Mo 14–16 | S 005 | Julian Rodemann/N.N. |
Übung 2 | Mi 8–10 | E 004 | Julian Rodemann/N.N. |
Tutorium | Di 16–18 | M 105 | Michael Kobl |
- Enseignant: Michael Kobl
- Enseignant: Dennis Mao
- Enseignant: Julian Rodemann
- Enseignant: David Rügamer
- Enseignant: Marie Scherzer
- Enseignant: Volker Schmid
Termine
- Vorlesung: Dienstag, 16 - 18 c.t., Prof. Dr. Christian Heumann
- Übungen (Statistik II):
Mittwoch, 12 - 14 c.t. (2x) & 14 - 16 c.t. (2x)
Donnerstag, 18 - 20 c.t.
Freitag, 10 - 12 c.t. - Übung (Statistik I):
Montag, 10 - 12 c.t.
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet "22wiwistat".
- Enseignant: Matthias Aßenmacher
- Enseignant: Lukas Beise
- Enseignant: Alexander Fogus
- Enseignant: Polina Gordienko
- Enseignant: Christian Heumann
- Enseignant: Antonio Melieni