- معلم: Caroline Friedel
- معلم: Volker Heun
- معلم: Elena Weiß
Computer Games and Games related formats are an essential branch of the
media industry with sales exceeding those of the music or the movie
industry. In many games, it is necessary to build up a dynamic
environment with autonomously acting entities. This comprises any types
of mobile objects, non-player characters, computer opponents or the
dynamics of the environment itself. To model these elements, techniques
from the area of Artificial Intelligence allow for modelling adaptive
environments with interesting dynamics. From the point of view of AI
Research, games currently provide multiple environments which allow to
develop breakthrough technology in Artificial Intelligence and Deep
Learning. Projects like OpenAIGym, AlphaGo, OpenAI5 or Alpha-Star earned
a lot of attention in the AI research community as well as in the broad
public. The reason for the importance of games for developing
autonomous systems is that games provide environments usually allowing
fast throughputs and provide clearly defined tasks for a learning agent
to accomplish. The lecture provides an overview of techniques for
building up environment engines and making these suitable for
largescale, high-throughput games and simulations. Furthermore, we will
discuss the foundations of modelling agent behaviour and how to evaluate
it in deterministic and non-deterministic settings. Based on this
formalisms, we will discuss how to analyse and predict agent or player
behaviour. Finally, we will introduce various techniques for optimizing
agent behaviour such as sequential planning and reinforcement learning.
- معلم: Zongyue Li
- معلم: Yunpu Ma
- معلم: Matthias Schubert
- معلم: Niklas Strauß
- معلم: Tobias Guggemos
- معلم: Korbinian Staudacher
- معلم: Xiao-Ting To
This lecture focuses on deep learning approaches in computer vision with a particular emphasis on generative approaches that not only analyze, but in particular synthesize novel images and video.
Modern deep learning has fundamentally changed artificial intelligence. Computer vision was at the forefront of many of these developments and has tremendously benefited over the last decade from this progress. Novel applications as well as significant improvements to old problems continue to appear at a staggering rate. Especially the areas of image and video synthesis and understanding have seen previously unthinkable improvements – and provided astounding visual results with wide-ranging implications (trustworthiness of AI, deep fakes).
We will discuss how a computer can learn to understand images and videos based on deep neural networks. The lecture will briefly review the necessary foundations of deep learning and computer vision and then cover the latest works from this quickly developing field. The practical exercises that accompany this course will provide hands-on experience and allow attendees to practice while building and experimenting with powerful image generation architectures.
Topics include but are not limited to:
- Image & video synthesis
- Visual superresolution and Image completion
- Artistic style transfer
- Interpretability, trustworthyness of deep models
- Self-supervised learning
-
Modern deep learning approaches, such as transformers and self-attention,
invertible neural networks, diffusion
models, etc.
Registration here on Moodle
Einschreibeschlüssel/Registration Key: Neural Networks
- معلم: Stefan Baumann
- معلم: Andreas Blattmann
- معلم: Ursula Fantauzzo
- معلم: Olga Grebenkova
- معلم: Ming Gui
- معلم: Dmytro Kotovenko
- معلم: Felix Krause
- معلم: Dominik Lorenz
- معلم: Pingchuan Ma
- معلم: Timo Milbich
- معلم: Kaan Oktay
- معلم: Björn Ommer
- معلم: Ulrich Prestel
- معلم: Johannes Schusterbauer
- معلم: Kim-Louis Simmoteit
- معلم: Nick Stracke
- معلم: Owen Vincent
- معلم: Matthias Wright
- معلم: Rajat Koner
- معلم: Volker Tresp
- معلم: Gengyuan Zhang
- معلم: Armin Hadziahmetovic
- معلم: Markus Joppich
- معلم: Felix Offensperger
- معلم: Ralf Zimmer
- معلم: Ursula Fantauzzo
- معلم: Timo Milbich
- معلم: Björn Ommer
- معلم: Ursula Fantauzzo
- معلم: Timo Milbich
- معلم: Björn Ommer
Im Praktikum „Virtual Reality“ sollen praktische Erfahrungen bei der Entwicklung von interaktiven und immersiven Anwendungen in Virtual Reality vermittelt werden. Der Inhalt umfasst alle Entwicklungsschritte von der Konzeption einer Projektidee bis hin zur fertigen Anwendung, die im Rahmen einer Abschlusspräsentation vorgestellt wird.
Als Software kommt Unreal Engine 4 zum Einsatz.
- معلم: Elisabeth Mayer
- معلم: Thomas Odaker