Die Vorlesung gibt eine Einführung in die Theorie fundamentaler algebraischer Strukturen. Unter anderem behandeln wir elementare Gruppentheorie, Gruppenoperationen, die Sylow-Sätze, Ringtheorie, insbesondere Teilbarkeit, Ideale und Polynomringe, sowie Körpererweiterungen und Galoistheorie. Als Anwendung beweisen wir, dass für Polynome vom Grad >= 5 keine allgemeine Lösungsformel existiert.


Einschreibeschlüssel auf der Webseite!
Klausuranmeldung (29.01. - 05.02.2024) ausschließlich über Moodle.


das ist die Vorlesung für Mathematik Lehramt Gymnasium im ersten Semester.

Einschreibung mit Einschreibeschlüssel ALAI

Einschreibeschlüssel: DiffInt1W23

Einführung in Finanzmathematik in diskreter Zeit.

Einschreibeschlüssel: fima1

The lecture provides an introduction to stochastic calculus with an emphasis on the mathematical concepts that are later used in the mathematical modeling of financial markets.

In the first part of the lecture course the theory of stochastic integration with respect to Brownian motion and Ito processes is developed. Important results such as Girsanov's theorem and the martingale representation theorem are also covered. The first part concludes with a chapter on the existence and uniqueness of strong and weak solutions of stochastic differential equations.

The second part of the lecture course gives an introduction to the arbitrage theory of financial markets in continuous time driven by Brownian motion. Key concepts are the absence of arbitrage, market completeness, and the risk neutral pricing and hedging of contingent claims. Particular attention will be given to the the Black-Scholes model and the famous Black-Scholes formula for pricing call and put options.

If you wish to participate in the course, please sign up by sending an e-mail from your LMU e-mail address to Annika Steibel (steibel@math.lmu.de).



In this course we will use classical tools in harmonic analysis to study nonlinear differential equations. In the first part, we will discuss some popular evolution equations such as heat equations, wave equations and Schrödinger equations where basic Fourier analysis tools are helpful. In the second part, we will focus on concrete models coming from fluid mechanics (e.g. Navier–Stokes and Euler equations) for which the Littlewood- Paley decomposition plays a prominent role.

The course is suitable for master students and motivated bachelor students. Prerequisites: Lebesgue integration and L^2 theory of the Fourier transform. Knowing some basic results from harmonic analysis (e.g. Maximal inequalities, Littlewood–Paley theory, ...) are helpful, but not mandatory since they will be recalled properly.

Course homepage: https://www.math.lmu.de/~nam/Fourier2324.php


Einschreibeschlüssel: Grund1WS23

Registration code: mqm23

Description:

In this course we present the basic and fundamental mathematical tools allowing to formulate and use quantum mechanics. In its early days, quantum mechanics have seen two mathematical apparatus competing to formalize it: Heisenberg's matrix mechanics and Schrödinger's wave mechanics. As we will see, these two pictures are in fact equivalent and can be unified using the tools of spectral theory, functional analysis, harmonic analysis, etc.

Mathematik I für Physiker

Einschreibeschlüssel: 23WSM1

Dies ist der dritte Teil des Einführungskurses in Mathematik für das Physikstudium. Einschreibung mit Einschreibeschlüssel MIIIP

Einschreibeschlüssel: MiQWS23

Einschreibeschlüssel: Num2324

Inhalt der Vorlesung ist eine Einführung in die Optimierung in - vornehmlich - endlicher Dimension. Wichtige Themen und Inhalte sind unter anderem:

Lineare Programme und ihre Standardformen, Existenz von Lösungen für lineare Programme, Dualitätstheorie für lineare Programme, das Simplexverfahren, Formulierung und Existenz von Lösungen konvexer Optimierungsprobleme, duale Darstellung konvexer Funktionen und die Kuhn-Tucker-Theorie.

Registration key: PDE1

This class is meant for everyone interested in problem solving, ML or quant finance 🧐💻 If you want to participate feel free to text us via walter@math.lmu.de or weber@math.lmu.de.

The registration key is beyondtheobvious

Organization:

Our first meeting will take place on 19th October from 16-18 o'clock in room B251 (Mathematical Institute)

Target Group:

Advanced BSc and MSc students in mathematics, physics, computer science, statistics and similar quantitative subjects

Content:

The content of the class can be structured in three pillars:

  1. Brainteasers and Logic Problems
  2. Coding Problems
  3. Useful and Interesting Theory

Course Description

In this lecture, we will consider various classes of stochastic processes that may differ in their state spaces and underlying index sets with a special focus on Gaussian, Lévy and Markov processes. In summary, the lecture will be divided into three core topics: the construction, the path behaviour and the probabilistic analysis of general stochastic processes.

Target Participants
  • Master students of Mathematics and Financial and Insurance Mathematics
Pre-requisites
  • Probability theory and measure and integration theory
Registration key
  • Processes

Einschreibeschlüssel: Distributionen