- Учитель: Andreas Leckner
- Учитель: Korbinian Meindl
- Учитель: Katharina Oberpriller
- Учитель: Leonardo Galli
- Учитель: Holger Rauhut
- Учитель: Shan Wei
- Учитель: Dirk Deckert
- Учитель: Kaan Savas
- Учитель: Anna Warlimont
- Учитель: Dieter Kotschick
- Учитель: Jonas Stelzig
- Учитель: Simon Gritschacher
- Учитель: Thomas Vogel
- Учитель: Alois Wohlschlager
- Учитель: Maksim Zhykhovich
Die Vorlesung gibt eine Einführung in die Theorie fundamentaler algebraischer Strukturen. Unter anderem behandeln wir elementare Gruppentheorie, Gruppenoperationen, die Sylow-Sätze, Ringtheorie, insbesondere Teilbarkeit, Ideale und Polynomringe, sowie Körpererweiterungen und Galoistheorie. Als Anwendung beweisen wir, dass für Polynome vom Grad >= 5 keine allgemeine Lösungsformel existiert.
- Учитель: Andreas Rosenschon
- Учитель: Simon Seidenschwarz
Klausuranmeldung (29.01. - 05.02.2024) ausschließlich über Moodle.
- Учитель: Leon Bollmann
- Учитель: Florian Haberberger
- Учитель: Thomas Sørensen
Einschreibeschlüssel: AnIS2324
- Учитель: Sakirudeen Abdulsalaam
- Учитель: Oliver Cooley
- Учитель: Lukas Emmert
- Учитель: Daniel Misselbeck-Wessel
- Учитель: Peter Philip
- Учитель: Christian Lange
- Учитель: Bernhard Leeb
das ist die Vorlesung für Mathematik Lehramt Gymnasium im ersten Semester.
Einschreibung mit Einschreibeschlüssel ALAI
- Учитель: Matthias Bauernfeind
- Учитель: Morena Maierbacher
- Учитель: Kajetan Söhnen
- Учитель: Heribert Zenk
- Учитель: Adalbert Fono
- Учитель: Gitta Kutyniok
- Учитель: Ernesto Araya Valdivia
- Учитель: Katharina Bieker
- Учитель: Mariia Seleznova
- Учитель: Laura Thesing
Einschreibeschlüssel: DiffInt1W23
- Учитель: Erwin Schörner
- Учитель: Leonard Wetzel
Einführung in Finanzmathematik in diskreter Zeit.
Einschreibeschlüssel: fima1
- Учитель: Karl-Wilhelm Georg Bollweg
- Учитель: Katharina Oberpriller
The lecture provides an introduction to stochastic calculus with an emphasis on the mathematical concepts that are later used in the mathematical modeling of financial markets.
In the first part of the
lecture course the theory of stochastic integration with respect to
Brownian motion and Ito processes is developed. Important results such
as Girsanov's theorem and the martingale representation theorem are also
covered. The first part concludes with a chapter on the existence and
uniqueness of strong and weak solutions of stochastic differential
equations.
The second part of the lecture course gives an introduction to the arbitrage theory of financial markets in continuous time driven by Brownian motion. Key concepts are the absence of arbitrage, market completeness, and the risk neutral pricing and hedging of contingent claims. Particular attention will be given to the the Black-Scholes model and the famous Black-Scholes formula for pricing call and put options.
If you wish to participate in the
course, please sign up by sending an e-mail from
your LMU e-mail address to Annika Steibel (steibel@math.lmu.de).
- Учитель: Karl-Wilhelm Georg Bollweg
- Учитель: Thilo Meyer-Brandis
- Учитель: Annika Steibel
In this course we will use classical tools in harmonic analysis to study nonlinear differential equations. In the first part, we will discuss some popular evolution equations such as heat equations, wave equations and Schrödinger equations where basic Fourier analysis tools are helpful. In the second part, we will focus on concrete models coming from fluid mechanics (e.g. Navier–Stokes and Euler equations) for which the Littlewood- Paley decomposition plays a prominent role.
The course is suitable for master students and motivated bachelor students. Prerequisites: Lebesgue integration and L^2 theory of the Fourier transform. Knowing some basic results from harmonic analysis (e.g. Maximal inequalities, Littlewood–Paley theory, ...) are helpful, but not mandatory since they will be recalled properly.
Course homepage: https://www.math.lmu.de/~nam/Fourier2324.php
- Учитель: Thành Nam Phan
- Учитель: Martin Christiansen
- Учитель: Christian Hainzl
Einschreibeschlüssel: Grund1WS23
- Учитель: Lukas Böke
- Учитель: Daniel Rost
- Учитель: Stefan Kolek Martinez de Azagra
- Учитель: Johannes Maly
Einschreibeschlüssel: ExamUF23W
- Учитель: Daniel Rost
- Учитель: Erwin Schörner
Einschreibeschlüssel: LinAlg1W23
- Учитель: Oliver Hendrichs
- Учитель: Erwin Schörner
Registration code: mqm23
Description:
In this course we present the basic and fundamental mathematical tools allowing to formulate and use quantum mechanics. In its early days, quantum mechanics have seen two mathematical apparatus competing to formalize it: Heisenberg's matrix mechanics and Schrödinger's wave mechanics. As we will see, these two pictures are in fact equivalent and can be unified using the tools of spectral theory, functional analysis, harmonic analysis, etc.
- Учитель: Emanuela Giacomelli
- Учитель: Armin Scrinzi
- Учитель: Arnaud Triay-Alcouffe
- Учитель: Julian Becker
- Учитель: Lea Boßmann
- Учитель: Tamas Makai
- Учитель: Konstantinos Panagiotou
- Учитель: Anna Ribelles Perez
- Учитель: Fotios Siammenos
Mathematik I für Physiker
Einschreibeschlüssel: 23WSM1
- Учитель: Dirk Deckert
- Учитель: Jago Silberbauer
Dies ist der dritte Teil des Einführungskurses in Mathematik für das Physikstudium. Einschreibung mit Einschreibeschlüssel MIIIP
- Учитель: Matthias Bauernfeind
- Учитель: Christoph Mittermaier
- Учитель: Panagiotis Papadopoulos
- Учитель: Heribert Zenk
Einschreibeschlüssel: MiQWS23
- Учитель: Daniel Rost
Einschreibeschlüssel: Num2324
- Учитель: Charlotte Dietze
- Учитель: Peter Philip
Inhalt der Vorlesung ist eine Einführung in die Optimierung in - vornehmlich - endlicher Dimension. Wichtige Themen und Inhalte sind unter anderem:
Lineare Programme und ihre Standardformen, Existenz von Lösungen für lineare Programme, Dualitätstheorie für lineare Programme, das Simplexverfahren, Formulierung und Existenz von Lösungen konvexer Optimierungsprobleme, duale Darstellung konvexer Funktionen und die Kuhn-Tucker-Theorie.
- Учитель: Julian Becker
- Учитель: Ari-Pekka Perkkiö
Registration key: PDE1
- Учитель: Vincent Ariksoy
- Учитель: Lukas Emmert
- Учитель: Rupert Frank
- Учитель: Jakob Stern
- Учитель: Werner Bley
- Учитель: Eva Brenner
This class is meant for everyone interested in problem solving, ML or quant finance 🧐💻 If you want to participate feel free to text us via walter@math.lmu.de or weber@math.lmu.de.
The registration key is beyondtheobvious.
Organization:
Our first meeting will take place on 19th October from 16-18 o'clock in room B251 (Mathematical Institute)
Target Group:
Advanced BSc and MSc students in mathematics, physics, computer science, statistics and similar quantitative subjects
Content:
The content of the class can be structured in three pillars:
- Brainteasers and Logic Problems
- Coding Problems
- Useful and Interesting Theory
- Учитель: Niklas Walter
- Учитель: Niklas Weber
Course Description
In this lecture, we will consider various classes of stochastic processes that may differ in their state spaces and underlying index sets with a special focus on Gaussian, Lévy and Markov processes. In summary, the lecture will be divided into three core topics: the construction, the path behaviour and the probabilistic analysis of general stochastic processes.
- Master students of Mathematics and Financial and Insurance Mathematics
- Probability theory and measure and integration theory
- Processes
- Учитель: Alexander Kalinin
- Учитель: Sergey Aristarkhov
- Учитель: Simone Rademacher
- Учитель: Gitta Kutyniok
- Учитель: Mariia Seleznova
- Учитель: Simon Gritschacher
- Учитель: Markus Land
Einschreibeschlüssel stexana
- Учитель: Heribert Zenk
Einschreibeschlüssel: Distributionen
- Учитель: Heribert Zenk