Person: Dr. Cornelia Oberhauser

SAS-Kurs als 5-tägiger Blockkurs in den Semesterferien

Termine:

Tag

   Uhrzeit
   Raum
Mo 11.03.2024
Vorlesung 9:15 - ca. 12:15
online über Zoom

Übung
13:15 - 17:00
online über Zoom
Di 12.03.2024
Vorlesung
9:15 - ca. 12:15 online über Zoom
Übung 13:15 - 17:00 online über Zoom
Do 14.03.2024
Vorlesung 9:15 - ca. 12:15 online über Zoom
Übung 13:15 - 17:00 online über Zoom
Mo 18.03.2024
Vorlesung 9:15 - ca. 12:15 online über Zoom
Übung 13:15 - 17:00 online über Zoom
Di 19.03.2024
Vorlesung 9:15 - ca. 12:15 online über Zoom
Übung 13:15 - 17:00 online über Zoom

Einschreibeschlüssel

  • Der Einschreibeschlüssel lautet: "saskurs2024"

Gastschlüssel

  • Der Gastschlüssel lautet: "saskurs2024"

Course password: TBA

The course will begin on November 3rd. 

More info coming soon!

In the rapidly evolving field of biomedical research, the generation of high-dimensional data has become a commonplace. This data deluge presents both opportunities and challenges in extracting meaningful insights. The seminar "Selected Topics in High-Dimensional Biomedical Data Analysis" is designed for bachelor and master students. It aims to teach students how to handle and analyze intricate biomedical data, helping them gain a better grasp of the field.

Self enrollment: HDA202324



This course provides an introduction to the theory and application of methods for analyzing in- complete data sets. The main focus will be on Multiple Imputation (MI) which has become a very popular way for handling missing data, because it allows for correct statistical inference in the presence of missing data. With the advent of MI algorithms implemented in statistical stan- dard software (R, SAS, Stata, SPSS,. . . ), the method has become more accessible to data analysts. For didactic purposes, we start by introducing some naive ways of handling missing data, and we use the examination of their weaknesses to create an understanding of the framework of Multiple Imputation. Solid R skills are a prerequisite for this course.


Enrollment Key: Incomplete


Financial econometrics is the subfield of econometrics that investigates the theory of financial markets and the products that comes with it. A special feature of financial data are the so-called "stylized facts", which do not exist in a comparable way in any field of empirical economics. These properties are significant in two respects: On the one hand, they have led to the falsification or modification of popular, theoretical models in the past. On the other hand, they have been the impetus for the development of models that have been extremely successful in practice. In this course we will study advanced technics of this field.

Target Audience:

-          Statistics bachelor students (preferably semester 5 and upwards) and

-          Statistics master students (credits can be counted for “Methodology and Modelling” and “Biostatistics” specification )


In this seminar, we take a closer look at areal data, spatial point processes and related topics. The students are asked to present a publication in this area. Furthermore, they have to implement the in the publication presented algorithms and models based on a further spatial data set.

 

Spatial point processes are stochastic processes on a subspace of multidimensional real numbers. Their realisations are finite, random and countable observations. In other words, they are point events that occur in space/on earth/etc.. Examples of such data are locations of crimes, locations of disease outbreaks or tree locations.

Areal data is a data format in which point observations are aggregated over subregions of a predefined space. These subregions are non-overlapping and make up the entire space. This format is predominately common in medical research and one of the central formats in which, for example, data on Corona infections and hospitalizations were available. Due to the loss of information on the specific point of observation, the estimation of the spatial correlation can become a bit trickier than in spatial point processes.




CSDS block course will happen on the following dates:

18-21 March 2024
25-28 March 2024

Please contact C.Haensch@lmu.de with questions

Password: w2324csds


DatePlacePersonStart
LectureFriday, 12:15 - 13:45Geschw.-Scholl-Pl. 1 - A 016Schomaker20.10.23
Lecture/
Exercise Session
Thursday, 16:15-17:45Geschw.-Scholl-Pl. 1 - A 015 Rehms/Kümpel19.10.23

    Enrolment key
    • The enrolment key is: "StatMetEpi2324"

    The "Advanced Programming (R)" course targets students in the Statistics and Data Science Master's programme (WP47).

    The course can also be taken by advanced Bachelor's students that have taken "Programmieren statistischer Software". For Bachelor students, Advanced Programming can be credited as WP4/WP7 (Bachelor PO 2021), or WP2/WP8 (Bachelor PO 2010).

    The first lecture will happen on Thursday, 2023-10-19, 18:00--20:00 c.t., location t.b.a.

    Enrollment key: advaprogr2324



    Die Veranstaltung "Programmieren mit Statistischer Software (R)" wendet sich an Studenten im Bachelor Statistik (3. Semester). Sie baut auf die Veranstaltung "Einführung in die Statistische Software" (1. Semester) auf.

    Termine
    Termin Ort Person
    Vorlesung: t.b.a. (!)
    t.b.a.
    Binder
    Uebung:
    t.b.a. t.b.a.
    Binder

    Einschreibeschlüssel: progr2324

    Welcome to the course "Statistics for Geosciences" in winter term 22/23!

    Room: C 112
    Date and time: Wednesday, 8.30h - 12h00 (weekly)


    Enrolment key: rose-diagram

    Official statistical agencies are the central information service providers in a democratically organized society, informing politics, business and society about current economic, social and increasingly also ecological developments. In this way, official statistics form an important basis for informed decisions. At the same time, official statistics act as a control authority, especially for politics, by empirically reflecting the consequences of decisions and actions. To meet this responsibility, official statistics production underlies a strict methodology and high-quality standards. 

    Against this background, there has also been an intensive discussion about the opportunities and challenges complex statistical modelling, machine learning techniques, and new data sources deliver. This development has also led to close cooperation of statistical authorities with a number of universities, resulting in an EU-wide certification of particular master's degree programmes (EMOS: European Master in Official Statistics). For students at LMU, it is possible to obtain an EMOS certificate by taking a specific route within the Machine Learning track and the Social Statistics and Data Science track.

    The course "EMOS A" aims to prepare students for participation in the discourse between academic and official statistics and the numerous opportunities for cooperation with public data producers. It provides an insight into typical questions and modes of argumentation, methodological principles, and the most important products of official statistics. First, we take a look at current research concerning official statistics. Then, the basic principles and legal framework of official statistics, their fundamental structure in Germany/Europe and their most important supporting institutions are discussed as a basis. Further topics will then include the EU system of environmental indicators, the role of Big Data in official statistics, selected aspects of result dissemination and statistical literacy, and access to official data sources for (own) secondary analyses, including an introduction to statistical anonymization techniques.

    The course format is a mix of classical lecture style, guest lectures and inverted classroom elements with in-person discussion and deepening of the topics. The course is compulsory for the EMOS variant; all other students can choose it as an elective module.

    Enrollment Key: emosa


    Instructors:

    Kick-off Meeting

    • TBD (potentially on October 23, 4pm)
    • Via Zoom 

    Credits and Contents

    • Credits: 6 ECTS
    • Applied Software Projects, working in a group of 1-3 students
    • Final Submission Date: Open for Discussion

    Enrollment key: TensorTorch

    Einschreibeschlüssel: sample2023


    Schedule

    day/time location instructor start date
    Lecture Mon, 16:00-18:00 Geschw.-Scholl-Pl. 1 (E) / E 006 Bühler 18.10.22
    Tutorial Wed, 8:30-10:00 Geschw.-Scholl-Pl. 1 (E) / E 006 Mao 23.10.22


    Enrolmentkey: ci2324



    This module discusses different types of latent structures and their statistical handling. Part A, taking place in the winter semester, will focus on statistical aspects of measurement and modelling issues in surveys and assessment studies.  Part B, scheduled for the summer semester, is planned to address statistical aspects of combining data sets and different methods in the context of anonymization/privacy protection.

    Concretely, Part A starts with classical testing theory (CTT) as a framework to describe the operationalization/measurement of continuous latent traits and utilizes CTT to derive and discuss critically well-known reliability measures such as Cronbach’s alpha. Then, different generalizations are studied, including structural equation models, Rasch-type models from probabilistic testing theory and situations with locally varying scales of measurement. In the second half of the semester, methods for handling incomplete data in regression models are investigated in more detail. Advanced frequentist and Bayesian correction methods for measurement error, misclassification, and missing data are developed. In this context, also an introduction to the framework of partial identification is given.

    The module can be attended already in the first Master's semester.  According to the Examination Regulations, the module is among the "narrow electives" in the Social Statistics and Social Data Science track, the "wide electives" in the Econometrics and Methodology and Modelling tracks and a potential "general elective" for all tracks. Alternatively, Part A or Part B can be recognized as 'Selected Topics of Social Statistics and Social Data Science'.

    Time and Dates: Tuesday, 6.15 pm to 7.45 pm, E 216 (main building)

    Enrolment Key: MeasMod

    This course will discuss essential research techniques in statistics and data science, also supporting students in successfully participating in seminars and writing a thesis. It is part of the Bachelor’s programmes in Statistics and Data Science (150 major or 60 ECTS minors: `Methoden und Techniken des wissenschaftlichen Arbeitens’,  P 16.1, and  WP 12.1 / WP 13.1, respectively). In addition, all interested Master’s students and Bachelor's students from the "old PO" are most welcome as well.

    We will meet mainly in the first half of the semester from 6.15 pm to 8 pm on the following Wednesdays: Oct 25th, Nov 8th, Nov 15th, Nov 22nd, Nov 29th, Dec 6th, and Jan 10th.

    The following topics will be addressed:
     Background: Science and Research
     Professional Literature Search (with some Hands-on Tutorials)
     Reading Research Papers
     Presenting Research
     Designing Simulation Studies
     Some Further Tips and Tricks: Mutual Exchange of Experiences

    Einschreibeschlüssel: wissArb



    Description

    A variety of digital data sources are providing new avenues for empirical social science research. With the emergence of Big Data, especially data from web sources play an increasingly important role in scientific research. In order to effectively utilize these data for answering substantive research questions, a modern methodological toolkit paired with a critical perspective on data quality is needed. This course introduces computational techniques that are suited for collecting and analyzing digital behavioral data, and for exploring, visualizing and finding patterns in (different types of) data from various sources. In addition, aspects of reproducibility, data quality and error frameworks for digital data are discussed.

    Enrolment Key

    CSSws2324

    Enrolment key: w2324-optim

    Kickoff

    Thu, October 19, 2pm at room S 006 (Schellingstr. 3)

    Credits

    6 ECTS

    Format

    3 hours lecture, 1 hour exercise

    Description

    The course introduces the theoretical foundation of optimization as well as the most prominent methods in this field. It covers the taxonomy of optimization problems and other basic principles of optimization, considering univariate and multivariate problems and commonly used approaches to tackle these. This contains first- and second-order methods as well as stochastic approaches. The course further deals with constrained optimization problems, derivative-free methods as well as multi-criteria optimization.

    Contents

    • Mathematical concepts
    • Optimization problems
    • Univariate optimization
    • First order methods
    • Second order methods
    • Constrained optimization
    • Derivative-free optimization
    • Evolutionary optimization
    • Bayesian optimization

    Einschreibeschlüssel: w2324-fmm

    Start

    Di., 17. Oktober, 16 Uhr in Raum E 004 (Hauptgebäude)

    Credits

    6 ECTS

    Format

    2 SWS Vorlesung, 2 SWS Übung

    Inhalt

    • Kondition, Stabilität und Komplexität
    • Numerische Lineare Algebra
    • Numerische Integration und Differentiation
    • Differentialgleichungen
    • Numerische Optimierung
    • Interpolation und Funktionsapproximation

    Grundkurs  
    Mo, 26.02., 10:00 - 17:00Ludwigstraße 28 RG, Raum III (023)
    Grundkurs  
    Di, 27.02., 10:00 - 17:00Ludwigstraße 28 RG, Raum III (023)
    Grundkurs  
    Mi, 28.02., 10:00 - 17:00Ludwigstraße 28 RG, Raum III (023)
    Aufbaukurs
    Do, 29.02., 10:00 - 17:00
    Ludwigstraße 28 RG, Raum III (023)
    AufbaukursFr, 01.03., 10:00 - 17:00Ludwigstraße 28 RG, Raum III (023)


    Schedule

    TimeLecturerBegin

    Exercise course
    (Group 1)

    Tuesday, 10:15 - 11:45 Sapargali, Garces Arias 
    24.10.2023

    Lecture

    Tuesday, 16:15 - 17:45
    Garces Arias  
    17.10.2023

    Lecture

    Friday, 14:15 - 15:45
    Garces Arias
    18.10.2023

    Exercise course
    (Group 2)

    Thursday, 08:15 - 09:45      
    Sapargali, Garces Arias 
    26.10.2023
    TutoriumFriday, 08:15 - 09:45Stephan
    21.04.2023


    Enrollment Key
    • The enrollment key is "stat_inf_w2324"

    Selbsteinschreibung mit dem Passwort WiSo2024

    Einschreibeschlüssel

    • Der Einschreibeschlüssel lautet: "stat3nf2023"

    Personen und Termine

    Tag und UhrzeitHörsaalDozent
    Vorlesung
    Mo 10-12 UhrGeschw.-Scholl-Pl. 1 (A) - A 120
    David Rügamer
    Fabian Scheipl
    Di 10-12 UhrSchellingstr. 3 (S) - S 006
    ÜbungDo 14-16 UhrGeschw.-Scholl-Pl. 1 (A) - Audi Max (A030)
    Nurzhan Sapargali
    TutoriumFr 10-12 UhrGeschw.-Scholl-Pl. 1 (M) - M 018
    Emanuel Sommer


    Einschreibeschlüssel: 
    5tati5tik

    Erster Termin: Voraussichtlich Donnerstag der 02. November 2023 sowohl von 10:15-11:45 Uhr: Alte Bibliothek (Raum 245, Ludwigstr. 33, 2. Stock)



    , als auch von  16:15 -18:00 Uhr : Prof.-Huber-Pl. 2 (V) - LEHRTURM-V005

    (Im späteren Verlauf kann dann vermutlich nur ein zeitslot angeboten werden.)


    Einschreibeschlüssel: Fragestunde

    Schedule:

    Wednesday 10-12 Geschw.-Scholl-Platz 1 (A) - A 014

    Thursday 12-14 Geschw.-Scholl-Platz 1 (A) - A 014

    Enrolment key:

    CIN23

    Sie können sich in den Kurs mit dem Schlüssel DHS2425 selbst einschreiben.

    DatePlacePersonStart
    LectureTuesday, 9:15-11:45Geschw.-Scholl-Pl. 1 - A 014Boulesteix/Hoffmann17.10.23
    Exercise SessionMonday, 14:15-15:45Geschw.-Scholl-Pl. 1 - A 120 Sauer/Wünsch06.11.23

      Enrolment key
      • The enrolment key is: "PCS2324"

      Schedule: 

      - Lecture: Monday, 16-18 c.t., Geschw.-Scholl-Pl. 1 - A 017 (starting Monday, 16 October 2023)

      - Lecture/Exercise: Wednesday, 10-12 c.t., Geschw.-Scholl-Pl. 1 - A 016 (starting Wednesday, 25 October 2023)

      Enrollment key: 

      life23Time


      Termine:

      TerminOrtPersonBeginn
      VorlesungDi, 12:15-13:45Geschw.-Scholl-Pl. 1 (A) - A 120Hoffmann/Kümpel17.10.23
      Vorlesung/Übung Mi, 14:15-15:45Geschw.-Scholl-Pl. 1 (A) - A 120 Mandl18.10.23

        Einschreibeschlüssel
        • Der Einschreibeschlüssel lautet: "EinfBiom2324"

        Selbsteinschreibungsschlüssel: grlgprkt


        Die Veranstaltung wendet sich an Studierende im Bachelor Statistik (3. Semester). Das "Grundlegende Praxisprojekt" (BA Statistik und Data Science - PO 2021) ist eine Pflichtveranstaltung (Modul P 11.1).

        Die Veranstaltung wird sowohl während der Vorlesungszeit als auch in den Semesterferien angeboten. Diese Moodle-Seite ist für beide Veranstaltungen. 
        Für beide Blöcke findet eine Einführungsveranstaltung mit Anwesenheitspflicht am 19.10. 10-12 statt.
        Aus organisatorischen Gründen ist eine frühzeitige, separate Anmeldung für die Teilnahme während der Vorlesungszeit nötig -- schreiben Sie sich bitte ein und gehen Sie dann zur Anmeldung auf der Kursseite.



        Einschreibeschlüssel: dskrpt


        Termin Ort Person
        Vorlesung 
        Do, 14.00 - 16.00     
        A140 (Hauptgebäude)
        Fabian Scheipl     
        Vorlesung  
        Fr, 10.00 - 12.00 M118 (Hauptgebäude)
        Fabian Scheipl
        Übung 1 
        Do, 12.00 - 14.00
        B106  (Hauptgebäude)
        Yichen Han
        Übung 2  
        Di, 16.00 - 18.00
        C123 (Theresienstr. 41)
        Michael Kobl
        Tutorium
        Di, 18.00 - 20.00
        S001 (Schellingstr. 3)
        Michael Kobl
        Übung & Tutorium beginnen erst in der zweiten Semesterwoche.

        Diese Veranstaltung vermittelt elementare Wahrscheinlichkeitsrechnung sowie Grundlagen der deskriptiven und explorativen Statistik. Dies umfasst grundlegende Axiome und Rechenregeln für Wahrscheinlichkeiten   (auch: bedingte und gemeinsame Wahrscheinlichkeiten) sowie die Begriffe der stochastischen und empirischen Unabhängigkeit für Ereignisse und Zufallsvariablen bzw. Merkmale. Die Lerninhalte umfassen auch eine erste einfache Begriffsbildung für und Eigenschaften von Zufallsvariablen, ihrer Wahrscheinlichkeitsdichten und Momente und wichtige parametrischer Verteilungsmodelle. Auf empirischer Seite werden entsprechend Skalenniveaus beobachteter Merkmale und einfache Erhebungsformen definiert und Techniken der uni- und multivariaten deskriptiven Statistik eingeübt: zum einen Datenvisualisierung anhand statistischer und wahrnehmungspsychologischer Leitlinien, zum anderen empirische Verteilungen und Kerndichten. Kennzahlen für Lage, Streuung, Schiefe, Wölbung, Konzentration und Assoziation werden eingeführt und ihre Eigenschaften intensiv diskutiert.  Letzteres umfasst auch eine erste Einführung in die Probleme kausaler Interpretation von beobachteten Assoziationen.


        Die Vorlesung (6 ECTS) entspricht Modul P3.1, die Übung (3 ECTS) dem Modul P4.1 des BA-Studiengangs Statistik und Data Science (PO 2021).
        Vorlesungsmodul auch anrechenbar für Studierende mit HF Mathematik oder HF Informatik (mit integriertem Anwendungsfach Statistik).

        Dieser Kurs behandelt die Grundlagen der Programmierung anhand der statischen Programmiersprache R.
        Sie addressiert Studierende im ersten Semester und erfordert keine Vorkenntnisse.
        Kurssprache ist Deutsch, ein Großteil der Unterlagen wird jedoch auf Englisch gestellt werden.

        Einschreibeschlüssel: statsoft2324

        Statistik I für Studierende der Soziologie, des Nebenfachs Statistik, der Medieninformatik und der Cultural and Cognitive Linguistics

        Sie müssen und können sich NICHT über das lsf für die Veranstaltung anmelden, schreiben Sie sich bitte einfach mit dem Einschreibeschlüssel in diesen Moodle Kurs ein. Alle erhalten einen Platz und es gibt keine Belegfristen. 

        Einschreibeschlüssel: Stat1NF

        Vorlesung Anna-Carolina Haensch (anna-carolina.haensch@stat.uni-muenchen.de)

        Übung Jacob Beck, Sarah Ball


        Schedule:
        First meeting: Wednesday, 18.10.2023
        Last meeting: Thursday, 08.02.2024

        Enrolment key: npmetrics

        Dieser Kurs wird Studierenden mit NF Statistik eine Einführung in die statistische Software (R) geben.

        Der Kurs setzt sich aus einer Mischung aus Flipped-Classroom Lehrvideos, Hands-On Lab-Sessions und Drop-In Hilfe-/Beratungssession zusammen.

        Weitere Infos folgen in Kürze.

        Sie müssen und können sich NICHT über das lsf für die Veranstaltung anmelden, schreiben Sie sich bitte einfach mit dem Einschreibeschlüssel StatSoftNF in diesen Moodle Kurs ein.


        Format
        Inverted classroom with 90 min live lecture recap + 90 min live exercise recap

        Class
        • Time: Thursday 10:15-11:45 h
        • Location: M 010
        Exercise
        • Time: Wednesday 12:15-13:45 h
        • Location: E 004

        Enrollment key
        • The enrollment key is I2ML.

        The seminar bridges the realms of statistics and data science. While statistical inference offers tools to draw reliable conclusions from limited data, data science including machine learning and deep learning harnesses these insights to predict and recognize patterns. The course will delve into the questions that statistical inference can tackle in data science and the challenges that emerge in data-centric analyses.  

        • Kick-off date: October 27, 2023 (via Zoom)
        • Presentations during the semester on 1 or 2 Fridays 

        Preliminary Topics:

        - Foundations of Statistical Inference and Challenges
        - Random-X and Model Violation
        - High-Dimensional Problems
        - Post-Selection Inference
        - Inference for Ensemble Methods
        - Effects of Implicit Regularization
        - Double/Debiased Machine Learning
        - Frequentist Inference in Neural Networks
        - Bayesian Inference in Neural Networks
        - Stochastic Gradient Descent-Averages for Inference

        "Automated Machine Learning" (AutoML) supports future developers in the field of machine learning to make important design decisions automatically based on predefined data sets in order to achieve the best possible results in a short time when developing ML applications.

        Inverted classroom style. Weekly meeting (in person): TBD

        Starting date: First week of term, exact date TBD

        Enrollment Key: automl2324


        MA seminar on multi-objective hyperparameter optimization and multi-objective machine learning algorithms.

        The enrollment key is "hpo".

        For questions please contact Matthias Feurer at matthias.feurer@stat.uni-muenchen.de

        The lecture deals with theoretical and practical concepts from the fields of statistical learning and machine learning. The main focus is on predictive modeling / supervised learning. The tutorial applies these concepts and methods to real examples for illustration purposes.

        key: SL_ws2324

        Enrolment key: StatMod24

        Session
             Instructor
         Schedule                    
                          Rythm   
           Room                                           
        LectureHelmut KüchenhoffTuesday: 12:15-13:45 
        Thursday: 12:15-13:45
               weekly (Both sessions discuss new topics)
        Geschw.-Scholl-Pl. 1 (E) - E 004
        Geschw.-Scholl-Pl. 1 (A) - A 140
        Work Shop         
        Martje Rave
        Monday: 12:15-13:45
        Thursday: 10:15- 13:45
               weekly (Both sessions discuss the same topic that week)
        Schellingstr. 3 (S) - S 001
        Schellingstr. 3 (R) - R 051

        Teilnehmende dieses Seminars werden basierend auf der offiziellen Seminareinteilung von Dr. Schollmeyer dem Moodle-Kurs hinzugefügt.

        Bei Fragen wenden Sie sich bitte an ludwig.bothmann@stat.uni-muenchen.de

        • Seminar für Bachelor Statistik und Data Science
        • Anmeldung/Platzvergabe über LSF

        Bayesianische Methoden werden in der Sportwissenschaft immer beliebter. Zu den ausgewiesenen Vorteilen des Bayesianischen Ansatzes gehört die Möglichkeit, komplexe Probleme zu modellieren, Schätzungen und Vorhersagen unter Berücksichtigung von Unsicherheiten zu erhalten, Informationsquellen zu kombinieren und gelerntes Wissen in Abhängigkeit von neu verfügbaren Daten zu aktualisieren. Das Ausmaß und die Vielfalt der Daten, die in den letzten Jahren im Sportbereich produziert wurden, und die Verfügbarkeit von Softwarepaketen für Bayesianische Analysen haben erheblich zu diesem Wachstum beigetragen. 

        In diesem Seminar werden wir verschiedene Anwendungen Bayesianischer Methoden in der Sportanalytik kennenlernen. Die Teilnehmer werden jeweils eine Methode vertieft theoretisch darstellen und praktisch anwenden.

        Einschreibeschlüssel für Interessenten: Interesse

        Zeitplan

        • Vorbesprechung Mitte November 2023
        • Präsentation der Theorie Januar 2024
        • Abgabe Arbeiten Ende März 2024

        Master course 

        • Master Statistics & Data Science – WP44 Advanced Statistical Modelling
        • ESG Data Science – Elective
        • Master Statistik (mit WiSo), Biostatistik – Ausgewählte Gebiete... oder Schätzen und Testen II (mit Zusatzleistung)

        Self-Enrolment Key: Dirichlet

        Bayesian methods have seen increasing use within statistics in the last couple of years. In Bayesian frameworks, prior knowledge can be integrated as prior distribution. These also allows to regularise parameters in large p>>n models via priors, up to the point where the prior becomes part of the statistical model itself.

        In this course, advanced Bayesian models will be discussed. These include several types of latent models, in particular latent Gaussian fields, applied for example to time series and spatial data, mixed effect models and other structured regression models. The course will also cover different type of algorithms to assess the posterior, based on Monte Carlo methods and on approximation. Further topics include Bayesian model and variable selection and Bayesian classification.

        Requirements

        Students should be familiar with basics of Bayesian statistics.

        Recommended: 

        • Statistical inference
        • Statistical modelling

        Learning outcomes:

        After successfully completing the course, students will be able 

        • to understand Bayesian models 
        • to apply Bayesian modelling for appropriate data
        • to interpret the results of Bayesian models 
        • to implement Bayesian models in standard software

        Master course 

        • Master Statistics & Data Science – WP45
        • ESG Data Science – Elective
        • Master Statistik (mit WiSo), Biostatistik – Räumliche Statistik

        Self-Enrolment Key: JonSnow



        Syllabus

        Teacher: Walter J. Radermacher
        Runtime: 1. October 2023 - 12. October 2023
        Format: Self-learning through online videos in the first week and in-person workshops for practical appliance of use cases in the second week.
        ExaminationOral Exam (3 ECTS credits)
        Language: English


        Who is this course for? MsC Statistics and Data Science (2021, WP 28+29+40+46), BsC Statistics and Data Science (2021, WP 8+11), Statistik und Data Science als Nebenfach für Bachelor 30 ECTS (2021, WP 4+5), Statistik und Data Science als Nebenfach für Bachelor 60 ECTS (2021, WP 11+12), Statistik und Data Science als Nebenfach 30 ECTS Mathematik (2021, WP 5+6), Statistik Nebenfach 60 ECTS Bachelor Soziologie (2021, WP 10+11), WISO Mater (2010, "Ausgewählte Gebiete..." (3ECTS))

        Self-Enrolment Key: StatsPublicGood#2324

        Termine

        • Vorlesung: Dienstag, 16 - 18 c.t.
        • Übungen (Statistik I): 
          Mittwoch, 12 - 14 c.t. & 14 - 16 c.t.
          Donnerstag, 10 - 12 c.t. (2x), 12 - 14 c.t. (2x), 18 - 20 c.t.
        • Übung (Statistik II):
          Donnerstag, 08 - 10 c.t.

        Einschreibeschlüssel

        • Der Einschreibeschlüssel lautet "23wiwistat24".


        Schedule

        • Lecture: Wednesday, 9 - 11 c.t.
        • Tutorial: Wednesday, 11 - 12 c.t.
        • Location: Oettingenstr. 67, B U101 (Raumfinder)

          Enrollment key

          • Enrollment key: flash_attention

          Teilnehmende dieses Seminars werden basierend auf der offiziellen Seminareinteilung von Dr. Schollmeyer dem Moodle-Kurs hinzugefügt.

          Bei Fragen wenden Sie sich bitte an matthias.feurer@stat.uni-muenchen.de