- المعلم: Tanveer Hannan
- المعلم: Andrea Maldonado Hernandez
- المعلم: Gabriel Marques Tavares
- المعلم: Thomas Seidl
- المعلم: Sandra Gilhuber
- المعلم: Zongyue Li
- المعلم: Matthias Schubert
- المعلم: Niklas Strauß
- المعلم: Sandra Gilhuber
- المعلم: Matthias Schubert
- المعلم: Thomas Seidl
- المعلم: Göran Kauermann
- المعلم: Victor Tuekam Mambou
Login: Please contact Susanne Dandl
Target group: Master Data Science
Course Description:
For decades, research in machine learning and causality progressed independently of each other. This seminar sheds light on the recent advances on the intersection between the two, which can be classified into two primary areas:
(1) How can machine learning algorithms contribute to causality? Examples are the estimation of heterogeneous treatment effects and causal structure learning.
(2) How can causal knowledge enhance machine learning models, for example, w.r.t. their generalizability, interpretability, and fairness?
- المعلم: Ludwig Bothmann
- المعلم: Susanne Dandl
- المعلم: Fabio Genz
- المعلم: Dieter Kranzlmüller
- المعلم: Jan Schmidt
Schedule
- Class: Tuesday, 12 - 14 c.t.
Enrollment key
- This class is only for students enrolled in the elite master program Data Science. You should have received the enrollment key via e-mail.
- If not, please let me know via e-mail giuseppe.casalicchio[at]stat.uni-muenchen.de to ask for the enrollment key.
- المعلم: Giuseppe Casalicchio
- المعلم: Göran Kauermann
- المعلم: Michael Windmann