- Викладач: Hannan Tanveer
- Викладач: Maldonado Hernandez Andrea
- Викладач: Marques Tavares Gabriel
- Викладач: Seidl Thomas
- Викладач: Gilhuber Sandra
- Викладач: Li Zongyue
- Викладач: Schubert Matthias
- Викладач: Strauß Niklas
- Викладач: Gilhuber Sandra
- Викладач: Schubert Matthias
- Викладач: Seidl Thomas
- Викладач: Kauermann Göran
- Викладач: Tuekam Mambou Victor
Login: Please contact Susanne Dandl
Target group: Master Data Science
Course Description:
For decades, research in machine learning and causality progressed independently of each other. This seminar sheds light on the recent advances on the intersection between the two, which can be classified into two primary areas:
(1) How can machine learning algorithms contribute to causality? Examples are the estimation of heterogeneous treatment effects and causal structure learning.
(2) How can causal knowledge enhance machine learning models, for example, w.r.t. their generalizability, interpretability, and fairness?
- Викладач: Bothmann Ludwig
- Викладач: Dandl Susanne
- Викладач: Genz Fabio
- Викладач: Kranzlmüller Dieter
- Викладач: Schmidt Jan
Schedule
- Class: Tuesday, 12 - 14 c.t.
Enrollment key
- This class is only for students enrolled in the elite master program Data Science. You should have received the enrollment key via e-mail.
- If not, please let me know via e-mail giuseppe.casalicchio[at]stat.uni-muenchen.de to ask for the enrollment key.
- Викладач: Casalicchio Giuseppe
- Викладач: Kauermann Göran
- Викладач: Windmann Michael