- Docente: Thomas Augustin
- Docente: Florian Dumpert
- Docente: Malte Schierholz
Financial econometrics is the subfield of econometrics that investigates the theory of financial markets and the products that comes with it. A special feature of financial data are the so-called "stylized facts", which do not exist in a comparable way in any field of empirical economics. These properties are significant in two respects: On the one hand, they have led to the falsification or modification of popular, theoretical models in the past. On the other hand, they have been the impetus for the development of models that have been extremely successful in practice. In this course we will study advanced technics of this field.
- Docente: Dennis Mao
Einschreibeschlüssel: WiSo2425
- Docente: Thomas Augustin
- Docente: Christoph Kern
Instructors:
- Mina Rezaei
- David Rügamer
- Emanuel Sommer
- TBD
Kick-off Meeting
- Expected October 25, afternoon (or in the week after)
- Via Zoom
Credits and Contents
- Credits: 6 ECTS
- Applied Software Projects, working in a group of 1-3 students
- Final Submission Date: Open for Discussion
Enrollment Key: applearning
- Docente: Mina Rezaei
- Docente: David Rügamer
- Docente: Emanuel Sommer
People and Dates:
Date & Time | Place | Person | |
---|---|---|---|
Lecture | Do., 12:15 - 13:45 | A 240 | Rügamer |
Lecture | Fr., 12:15 - 13:45 | S 002 | Rügamer |
Exercise | Mo., 14:15 - 15:45 | S 003 | Schulte/Sommer |
Tutorial | Wed., 16:15 - 17:45 | M 114 | Runnwerth |
Lecture: David Rügamer
Exercise: Rickmer Schulte, Emanuel Sommer
Tutorial: Kilian Runnwerth
Enrollment Key: StatMod101
- Docente: David Rügamer
- Docente: Kilian Runnwerth
- Docente: Karl Schulte
- Docente: Emanuel Sommer
Der Einschreibeschlüssel lautet: MatheINF
- Docente: Hannah Blocher
- Docente: Georg Schollmeyer
This bachelor seminar revisits these competing paths and critically compares them to one another. We will read introductory texts to get (more) familiar with frequentist, Bayesian and fiducial inference. We will learn about their differences with respect to both mathematical intricacies and philosophical underpinnings.
The seminar is intended as an introductory course, focusing on very basic concepts and foundational knowledge. Participants should have attended the courses on “statistical inference I and II” (“Statistik III” and “Statistik IV”), but no explicit prior knowledge on the frequentism, Bayesianism, and fiducialism debates is required. We will work with two modern textbooks [1,2], one of which [2, Part I] especially targets novices unfamiliar with the subject. We also welcome interested minor students in their final year. The seminar will be held in English.
[1] Berger, James, Meng, Xiao-Li, Reid, Nancy, and Xie, Ming-Ge. (Eds.). (2024). Handbook of Bayesian, Fiducial, and Frequentist Inference. CRC Press.
[2] Efron, Bradley, and Trevor Hastie. Computer age statistical inference, algorithms, evidence, and data science. student edition. Cambridge University Press, 2021.
- Docente: Julian Rodemann
The Open Science movement plays a central role in promoting good
scientific practice and overcoming the replication crisis in the
empirical sciences. Statistics is a key driver of progress in
numerous scientific disciplines and serves as an indispensable tool
for knowledge discovery.
Our seminar deals with important epistemological aspects of
statistics, with the aim of developing a solid understanding of the
statistical concepts addressed in the context of open science and
the replication crisis. We pay special attention to the philosophy
of statistical inference and testing. Through this discussion, we
will lay a solid foundation for the application and interpretation
of various statistical concepts.
- Docente: Moritz Herrmann
- Docente: Maximilian Mandl
Official statistical agencies are the central information service providers in a democratically organized society, informing politics, business and society about current economic, social and increasingly also ecological developments. In this way, official statistics form an important basis for informed decisions. At the same time, official statistics act as a control authority, especially for politics, by empirically reflecting the consequences of decisions and actions. To meet this responsibility, official statistics production underlies a strict methodology and high-quality standards.
Against this background, there has also been an intensive discussion about the opportunities and challenges complex statistical modelling, machine learning techniques, and new data sources deliver. This module aims to prepare students for participation in the discourse between academic and official statistics and the numerous opportunities for cooperation with public data producers. It provides an insight into typical questions and modes of argumentation, methodological principles, and the most important products of official statistics. First, the basic principles and legal framework of official statistics, their fundamental structure in Germany/Europe and their most important supporting institutions are discussed as a basis. Further topics will then include the EU system of environmental indicators, national and international poverty measurement, the role of machine learning and big data in official statistics, selected aspects of result dissemination and statistical literacy, and access to official data sources for (own) secondary analyses, including an introduction to statistical anonymization techniques.
The course format is a mix of classical lecture style, guest lectures and inverted classroom elements with in-person discussion and deepening of the topics. The course is compulsory for the EMOS (see below) variant; all other students can choose it as an elective module.
Enrollment Key: emosa
- Docente: Thomas Augustin
This course will discuss essential research techniques in statistics and data science, also preparing students for successfully participating in seminars and writing a thesis. The material presented focuses mainly on classical research techniques and a first understanding of research as a social system. Beyond this, classroom discussions will hopefully help combine the classical techniques with "modern personal knowledge management methods", which are currently also intensively disseminated by different YouTube authors.
The course is part of the Bachelor’s programmes in Statistics and Data Science (150 major or 60 ECTS minors: `Methoden und Techniken des wissenschaftlichen Arbeitens’, P16.1, and WP 12.1 / WP 13.1, respectively). All interested Master’s students and Bachelor's students from the "old POs" are most welcome as well. A certificate can be issued for active personal attendance.
Minor students and Bachelor's degree Erasmus students who will not attend a seminar can obtain 3 ECTS via an examination/small project at the end of the course.
Time and Dates: Wednesdays, 6.15 p.m. - 8.00 pm, A213 (main building), on October 23, November 13, (20?,), December 4, 11 (, 18?) and on a further date later in the semester (to be
arranged).
Enrollment key: ResTech25
If you are interested in active participation in the course but cannot always come in person for good reasons, you are welcome to contact me (Thomas Augustin). We are currently investigating whether we can offer a fallback Zoom solution.
- Docente: Thomas Augustin
Organisation:
Vorlesungen: Mittwoch, 10.00 - 12.00, Schellingstr. 3 (S) - S 001 (wöchentlich)
Vorlesungen: Donnerstag, 10.00 - 12.00, Schellingstr. 3 (S) - S 005 (wöchentlich)
Übung 1: Dienstag, 14.15 - 15.45, Geschw.-Scholl-Pl. 1 (D) - D 209 (wöchentlich)
Übung 2: Donnerstag, 14.15 - 15.45, Geschw.-Scholl-Pl. 1 (D) - D 209 (wöchentlich)
Student enrollment key: InfStat12025!
- Docente: Jan Anders
- Docente: Thomas Augustin
- Docente: Sergio Buttazzo
- Docente: Christian Heumann
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Di, 16:15-17:45 |
Schellingstr. 3 (S) - S 002 |
Thomas Nagler | 15.10.2024 |
Übungsgruppe 1 | Mi, 12:15-13:45 |
Schellingstr. 3 (S) - S 005 | Jana Gauß |
23.10.2024 |
Übungsgruppe 2 | Do, 12:15-13:45 | Theresienstr. 39 - B 051 |
Jana Gauß | 24.10.2024 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "fmm2425"
- Docente: Jana Gauß
- Docente: Thomas Nagler
This seminar is designed to be taken together with the course "Causal Inference" as an opportunity to explore topics from the lectures in more depth. Taking the course "Causal Inference" is not required, but background knowledge on causality is strongly recommended.
Because of its link to the course, the topics of the seminar are strongly related: we will read and discuss recent research papers on the identification of causal effects with a focus on applications in economics.
- Docente: Daniel Wilhelm
Causality is central to much of empirical work in economics. After formally defining the concept of causality through potential outcomes and identification of causal effects, the course introduces several research designs in which identification of causal effects can be established. The course shows the formal identification arguments, discusses empirical examples, and practical aspects of implementation. Examples of research designs covered are matching, instrumental variables, differences-in-differences, and regression discontinuity designs.
Enrolment key: ci2425
- Docente: Zhan Lin
- Docente: Daniel Wilhelm
Welcome to the course "Statistics for Geosciences" in winter term 24/25!
First meeting: Wednesday, October 16, 15h00 (UTC/GMT +2) via zoom
Enrolment key: rose-diagram
- Docente: Julian Rodemann
This course provides a comprehensive overview of the key methodological principles in designing, analyzing, and interpreting epidemiological studies.
The first part introduces foundational concepts such as defining estimands (the research question) and basic causal thinking. It also covers essential epidemiological measures, including prevalence, incidence, and effect measures, to describe associations between exposures and outcomes. Additionally, the course addresses challenges common in observational studies, such as bias and confounding. It critically examines how different study designs and statistical techniques can be used to handle both measured and unmeasured confounding.
The second part of the course focuses on more advanced topics. These include the role of evidence in shaping policy, the handling of missing data, and the analysis of competing risks in epidemiological research.
Enrollment Key: StatMetEpi2425- Docente: Michael Schomaker
- Docente: Christoph Wiederkehr
Enrollment key: css2024
- Docente: Paul Bauer
- Docente: Lisa Bondo Andersen
- Docente: Anna-Carolina Haensch
- Docente: Olga Kononykhina
- Docente: Ailin Liu
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "stat3nf2024"
- Docente: Jan Anders
- Docente: Niklas Ippisch
- Docente: Malte Schierholz
The seminar will present and discuss current statistical analyses of the climate crisis. It addresses central topics from a joint research project (CLIMEX II) with the LMU Chair of Physical Geography and Environmental Modelling. There will be two focal points.
Statistical modelling of climate change, extreme climatic events and natural hazards. This involves uncertainty quantification of climate models, drought forecasts for Bavaria, modelling of extreme events
Effects of climate change on human health. In particular, models that attempt to analyse the current and future adverse effects (e.g. number of additional deaths) caused by climate change will be discussed. In particular, analyses by the Intergovernmental Panel on Climate Change (IPCC) will be addressed.
Students are expected to engage intensively with the scientific literature, present the statistical methodology for the chosen topic and/or replicate results from the literature. Students will work on their seminar topic in groups of 2 Persons, one statistics and one geography student. The Seminar meetings, presentations and final report will be in English. We also recommend good skills in git and GitHub for the statistics students. It is possible to present your topics and, if suitable, to work on them in the seminar. The final results of the Seminar will be published as Chapters online in a Book: https://henrifnk.github.io/Seminar_ClimateNStatistics/
Key : CCstats2425- Docente: Henri Funk
Schedule:
- Lecture/Exercise: Monday, 16-18 c.t., Geschw.-Scholl-Pl. 1 - A 017 (starting Monday, 14 October 2024)
- Lecture/Exercise: Wednesday, 10-12 c.t., Geschw.-Scholl-Pl. 1 - F 007 (starting Wednesday, 16 October 2024)
- Ratio: Lecture:Exercise = 3:1; first exercise class on Monday, 21 October 2024
Enrollment key:
Surv24Ana
- Docente: Johannes Piller
- Docente: Nurzhan Sapargali
- Docente: Simon Wiegrebe
- Docente: Juliet Fleischer
- Docente: Yichen Han
- Docente: Mona Niethammer
- Docente: Johannes Piller
- Docente: Helena Veit
- Docente: Simon Wiegrebe
Termine
- Dieser Kurs ist als Kurs zum Selbststudium konzipiert.
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet "miniconda3".
- Docente: Ludwig Bothmann
This tutorial is aimed at Master's students seeking to refresh or broaden their basic mathematics skills.
Enrolment key (Einschreibeschlüssel): MathIsFun
- Docente: Hannah Kümpel
Einschreibeschlüssel: stat1wise2425
- Docente: Anna-Carolina Haensch
- Docente: Clara Strasser Ceballos
- Docente: Leah von der Heyde
Das WP "Statistik und Kirche" bietet eine umfassende Einführung in die statistische Analyse von Kirchenmitgliedschaften. Im WP werden Datenquellen der katholischen Kirche betrachtet, um ein tiefgehendes Verständnis für die Erhebung und Analyse von Mitgliedschaftsdaten zu entwickeln. Themen wie Datenqualität, Kirchenmitgliedschaftsuntersuchungen (KMU), deskriptive Statistik und Datenvisualisierung stehen im Mittelpunkt.
Das WP richtet sich sowohl an Theologie- als auch Statistikstudierenden, die in interdisziplinären Teams zusammenarbeiten werden. Diese Zusammenarbeit ermöglicht einen Austausch verschiedener Perspektiven und fördert das gemeinsame Erarbeiten von Erkenntnissen. Eine Mitgliedschaft in der katholischen Kirche ist selbstverständlich KEINE Voraussetzung für die Teilnahme am WP als Statistikstudierender.
BA Statistik und Data Science: WP 8 Einblicke in ausgewählte Anwendungsfelder von Statistik und Data Science
BA Statistik und Data Science: WP 11 Spezielle Themen der Statistik und Data Science
Seminar (für die kath. Theologie/fällt nicht unter die Seminare in der Statistik!) Pastoraltheologie / Kirchenrecht
Einschreibeschlüssel:
statkirche- Docente: Jacob Beck
- Docente: Anna-Carolina Haensch
- Docente: Jean Nke Ongono
- Docente: Clara Strasser Ceballos
- Docente: Andreas Wollbold
The course (timeline) will be project-based with individual meetings between project supervisor and students
Enrollment key: applyDL
Schedule:
Time | Lecturer | Begin | |
---|---|---|---|
Lecture |
Monday, 10:15 - 11:45 |
Prof. Dr. Heumann |
14.10.2024 |
Tutorial | Tuesday, 08:15 - 09:45 | Stephan |
22.10.2024 |
Lecture |
Tuesday, 14:15 - 15:45 |
Prof. Dr. Heumann |
15.10.2024 |
Exercise course (Group 1) |
Wednesday, 14:15- 15:45 | Sapargali, Garces Arias |
23.10.2024 |
Exercise course (Group 2) |
Thursday, 08:15 - 09:45 |
Sapargali, Garces Arias |
24.10.2024 |
Enrollment Key
- The enrollment key is "stat_inf_w2425"
- Docente: Stephan Bark
- Docente: Esteban Garces Arias
- Docente: Christian Heumann
- Docente: Nurzhan Sapargali
Einführung in die Statistische Software R für erstes Semester Bachelor "Statistik und Data Science"
Einschreibeschlüssel: statsoft2425
- Docente: Andreas Bender
- Docente: Philip Boustani
- Docente: Stefanie Peschel
Date | Place | Person | Start | |
---|---|---|---|---|
Lecture | Thursday, 9:15-11:45 | Geschw.-Scholl-Pl. 1 - A 014 | Boulesteix/Hoffmann | 17.10.23 |
Exercise Session | Monday, 8:15-9:45 | Geschw.-Scholl-Pl. 1 - A 014 | Sauer/Wünsch | 04.11.24 |
Enrolment key
- The enrolment key is: "PCS2425"
- Docente: Anne-Laure Boulesteix
- Docente: Sabine Hoffmann
- Docente: Christina Sauer
- Docente: Milena Wünsch
Termine:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Vorlesung | Di, 12:15-13:45 | Geschw.-Scholl-Pl. 1 (A) - A 120 | Hoffmann/Mandl | 15.10.24 |
Vorlesung/Übung | Mi, 14:15-15:45 | Geschw.-Scholl-Pl. 1 (A) - A 125 | Hoffmann/Mandl | 16.10.24 |
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet: "EinfBiom2425"
- Docente: Sabine Hoffmann
- Docente: Maximilian Mandl
- Tuesdays, 14:15-16:00; Geschw.-Scholl-Pl. 1 (E) / E 216
- Wednesdays, 12:15-14:00; Geschw.-Scholl-Pl. 1 (E) / E 216
Enrollment Key: aca2425
In this course, we will learn how to conduct empirical analyses through the lenses of permutation- and bootstrap-based techniques. In particular, we will uncover how these nonparametric methods allow us to make reliable inferences under minimal assumptions in a data-driven way.
This course offers a unique blend of three domains: a solid theoretical foundation, a careful treatment of the computational principles, and a comprehensive revision of key applications that are essential for causal inference. This way, you will understand the basics of nonparametric inference and how to apply it in practice.
Using real-world examples from experimental or observational data, we will gain experience by applying these methods to uncover causal relationships and draw robust conclusions. Crucially, we will engage in hands-on projects where you can put your coding skills to the test.
Designed for advanced undergraduate students with some probability and statistics background, this course is a stepping stone to modern data analysis. Whether you are planning a career in statistics, data science, economics, psychology, or any field that relies on data-driven decision-making, this course will equip you with the tools, knowledge, and coding expertise to take on contemporary problems in applied causal analysis.
- Docente: Mauricio Olivares Gonzalez
Die Veranstaltung wendet sich an Studierende mit Hauptfach Statistik und Data Science bzw. Statistik. Das Fortgeschrittene Praxisprojekt (PO 2021) bzw. Statistische Praktikum (PO 2010) ist für Studierende im Bachelor-Studiengang Statistik ein Pflichtbestandteil des Studiums. In Gruppen von 4-5 Personen werden Projekte aus der angewandten Statistik bearbeitet. In der Regel besteht ein Projekt aus statistischen Fragestellungen, die sich aus der Zusammenarbeit mit externen Kooperationspartnern ergeben.
Jede Gruppe hält einen Zwischenvortrag bei dem bisherige Ergebnisse diskutiert und Anreize für weitere Analyse-Ansätze gegeben werden. Abgeschlossen wird das Praktikum mit einem längeren Vortrag in Anwesenheit des Projektpartners.
Die Statistik-Kenntnisse aus der Veranstaltung "Einführung in die lineare statistische Modellierung" bzw. "Lineare Modelle" werden für das Praktikum dringend empfohlen. Ohne diese Kenntnisse wird eine Bearbeitung der Projekte nicht möglich sein.
Die Veranstaltung wird sowohl während der Vorlesungszeit als auch in den Semesterferien angeboten. Die fristgerechte Anmeldung bis zum 30.09.2024 ist notwendig und verpflichtend, um eine ausreichende Menge an Projekten vorbereiten zu können. Ohne Anmeldung kann eine Teilnahme nicht garantiert werden. Bei der Anmeldung bitte auf die Angabe der korrekten Prüfungsordnung achten. Bitte beachten Sie, dass das Einschreiben in diesen Kurs keine Anmeldung darstellt.
Einschreibeschlüssel : statp2425
- Docente: Helen Alber
- Docente: Sabine Hoffmann
- Docente: Mona Niethammer
- Docente: Johannes Piller
- Docente: Daniel Schlichting
Ausgehend von der linearen Modellierung werden komplexe und flexible Regressionsmodelle (generalisierte lineare Modelle und generalisierte additive Modelle) behandelt. Weiter wird ein Überblick über wichtige multivariate Analysetechniken, wie Klassifikation, Diskriminanzanalyse und Clusteranalyse und Modelle für latente Variablen, gegeben.
Termine und Personen:
Termin | Ort | Person | |
---|---|---|---|
Vorlesung |
Di, 10.00 - 12.00 |
Kaulbachstr. 37 - 023 |
Hoffmann/Scheipl |
Vorlesung |
Fr, 10.00 - 12.00 |
Schelling Str. 3- S002 |
Hoffmann/Scheipl |
Übung |
Mi, 10.00 - 12.00 |
Geschw.-Scholl-Pl. 1 (M) - M 105 |
Wiederkehr/Rave |
Übung | Do, 12.00 - 14.00 |
Geschw.-Scholl-Pl. 1 (B) - B 006 | Wiederkehr/Rave |
Tutorium |
Kein Tutorium dieses Semester |
Vorlesung: Fabian Scheipl und Sabine Hoffmann
Übung: Christoph Wiederkehr und Martje Rave
Tutorium: Kein Tutorium
Einschreibeschlüssel
5tati5tik
- Docente: Sabine Hoffmann
- Docente: Martje Rave
- Docente: Fabian Scheipl
- Docente: Christoph Wiederkehr
Format
Inverted classroom with 90 min live lecture recap + 90 min live exercise recap. Videos are HERE.
Class
Time: Thursday, 10:15-11:45 h
Location: Schellingstr. 3 - S 003
Exercise
Time: Friday, 12:15-13:45 h
Location: Geschwister-Scholl-Platz 01 - A 119
Enrollment key
The enrollment key is I2ML_ws2425.
- Docente: Giuseppe Casalicchio
- Docente: Fiona Ewald
- Docente: Holger Löwe
Enrollment Key: w2425_seminar_fma
- Docente: Yawei Li
- Docente: Mina Rezaei
Dieser Kurs wird Studierenden mit NF Statistik eine Einführung in die statistische Software (R) geben.
Der
Kurs setzt sich aus einer Mischung aus Flipped-Classroom Lehrvideos,
Hands-On Lab-Sessions und Drop-In Hilfe-/Beratungssession zusammen.
Weitere Infos findet Ihr im Kurs.
Sie müssen und können sich NICHT
über das lsf für die Veranstaltung anmelden, schreiben Sie sich bitte
einfach mit dem Einschreibeschlüssel StatSoftNF in diesen Moodle Kurs ein.
- Docente: Jacob Beck
- Docente: Jan Simson
Teacher: Walter J. Radermacher
Runtime: 1. October 2024 - 10. October 2023
Format: Self-learning through online videos in the first week and in-person workshops for practical appliance of use cases in the second week.
Examination: Oral Exam (3 ECTS credits)
Language: English
Who is this course for? MsC Statistics and Data Science (2021, WP 28+29+40+46), BsC Statistics and Data Science (2021, WP 8+11), Statistik und Data Science als Nebenfach für Bachelor 30 ECTS (2021, WP 4+5), Statistik und Data Science als Nebenfach für Bachelor 60 ECTS (2021, WP 11+12), Statistik und Data Science als Nebenfach 30 ECTS Mathematik (2021, WP 5+6), Statistik Nebenfach 60 ECTS Bachelor Soziologie (2021, WP 10+11), WISO Mater (2010, "Ausgewählte Gebiete..." (3ECTS))
- Docente: Markus Herklotz
Enrolment key: karushkuhntucker2425
Kickoff: TBA
Credits: 6 ECTS
Format: 3 hours lecture, 1 hour exercise
Description
The course introduces the theoretical foundation of optimization as well
as the most prominent methods in this field. It covers the taxonomy of
optimization problems and other basic principles of optimization,
considering univariate and multivariate problems and commonly used
approaches to tackle these. This contains first- and second-order
methods as well as stochastic approaches. The course further deals with
constrained optimization problems, derivative-free methods as well as
multi-criteria optimization and Bayesian optimization of black box functions.
- Mathematical concepts
- Optimization problems
- Univariate optimization
- First order methods
- Second order methods
- Constrained optimization
- Derivative-free optimization
- Evolutionary optimization
- Bayesian optimization
- Docente: Bernd Bischl
- Docente: Chris Kolb
- Docente: Ziyu Mu
- Docente: Tobias Pielok
- Docente: Lennart Schneider
Selbsteinschreibungsschlüssel: grlgprkt
Die
Veranstaltung wendet sich an Studierende im Bachelor Statistik & DataScience (3.
Semester). Das "Grundlegende Praxisprojekt" (BA Statistik und Data
Science - PO 2021) ist
eine Pflichtveranstaltung (Modul P 11.1).
Die Veranstaltung wird sowohl während der Vorlesungszeit (in zwei getrennten Termingruppen) als auch
in den Semesterferien angeboten. Diese Moodle-Seite ist gemeinsam für alle Veranstaltungen.
Für alle drei Blöcke finden Einführungsveranstaltungen mit Anwesenheitspflicht am 14. und 21.10.2024, 16-18 Uhr statt. Aus organisatorischen Gründen ist eine frühzeitige, separate Anmeldung für die Teilnahme während der Vorlesungszeit nötig -- schreiben Sie sich bitte in den Kurs ein und melden Sie sich dann auf der Kursseite für einen der 128 während dem Semester verfügbaren Praktikumsplätze an.
- Docente: Helen Alber
- Docente: Noemi Castelletti
- Docente: Eugen Gorich
- Docente: Sabine Hoffmann
- Docente: Mona Niethammer
- Docente: Johannes Piller
- Docente: Christina Sauer
- Docente: Fabian Scheipl
- Docente: Daniel Schlichting
- Docente: Helena Veit
Please contact bolei.ma@lmu.de if you have any questions.
- Docente: Anna-Carolina Haensch
- Docente: Bolei Ma
Einschreibeschlüssel: dskrpt
Termine | Ort | Person | |
---|---|---|---|
Vorlesung |
Mo, 14.00 - 16.00 | S 002 (Schellingstr. 3) | Fabian Scheipl |
Vorlesung |
Do, 14.00 - 16.00 | A 140 (Hgb) |
Fabian Scheipl |
Übung 1 |
Mo, 10.00 - 12.00 |
B 106 (Hgb) |
Patrick Schenk |
Übung 2 |
Do, 12.00 - 14.00 |
B 106 (Hgb) |
Patrick Schenk |
Tutorium |
Di, 16.00 - 18.00 |
S 001 (Schellingstr. 3) |
Michael Kobl |
Übung & Tutorium beginnen erst in der zweiten Semesterwoche.
- Docente: Michael Kobl
- Docente: Fabian Scheipl
- Docente: Patrick Schenk
Dates:
Termin | Ort | Person | Beginn | |
---|---|---|---|---|
Lecture | Wed, 16:15-17:45 | Geschw.-Scholl-Pl. 1 (A) / A 022 | Nagler | 16.10.24 |
Lecture/Exercise | Thu, 16:15-17:45 | Geschw.-Scholl-Pl. 1 (M) / M 105 | Nagler/Palm | 17.10.24 |
Password
- The password for enrolment is: "mathstat"
- Docente: Thomas Nagler
- Docente: Nicolai Palm
Master and Bachelor Seminare
Enrolment Key: Hierarchy
- Docente: Volker Schmid
Enrolment Key: sl_2425
- Docente: Bernd Bischl
- Docente: Ludwig Bothmann
- Docente: Yawei Li
- Docente: Tobias Pielok
Person: Dr. Cornelia Oberhauser
SAS course as a 5-day block course during the semester break
Dates:
Day |
Time |
Room |
|
---|---|---|---|
Mon 23.09.2024 |
Lecture | 9:15 - approx. 12:15 |
online via Zoom |
Exercise | 13:15 - 17:00 |
online via Zoom |
|
Tue 24.09.2024 |
Lecture |
9:15 - approx. 12:15 | online via Zoom |
Exercise | 13:15 - 17:00 | online via Zoom | |
Thu 26.09.2024 |
Lecture |
9:15 - approx. 12:15 | online via Zoom |
Exercise | 13:15 - 17:00 | online via Zoom | |
Mon 30.09.2024 |
Lecture |
9:15 - approx. 12:15 | online via Zoom |
Exercise |
13:15 - 17:00 | online via Zoom | |
Tue 01.10.2024 |
Lecture |
9:15 - approx. 12:15 | online via Zoom |
Exercise |
13:15 - 17:00 | online via Zoom |
Enrolment key
- The enrolment key is: ‘saskurs2024’
Guest key
- The guest key is: ‘saskurs2024’
- Docente: Cornelia Oberhauser
Teilnehmende dieses BA-Seminars werden basierend auf der offiziellen Seminareinteilung von Dr. Schollmeyer dem Moodle-Kurs hinzugefügt.
Wichtige Informationen zur Orientierung sind in diesem Dokument zusammengefasst.
Bei Fragen wenden Sie sich bitte an ludwig.bothmann@lmu.de
- Docente: Ludwig Bothmann
Master course
- Master Statistics & Data Science – WP44 Advanced Statistical Modelling
- ESG Data Science – Elective
- Master Statistik (mit WiSo), Biostatistik – Ausgewählte Gebiete... oder Schätzen und Testen II (mit Zusatzleistung)
Bayesian methods have seen increasing use within statistics in the last couple of years. In Bayesian frameworks, prior knowledge can be integrated as prior distribution. These also allows to regularise parameters in large p>>n models via priors, up to the point where the prior becomes part of the statistical model itself.
In this course, advanced Bayesian models will be discussed. These include several types of latent models, in particular latent Gaussian fields, applied for example to time series and spatial data, mixed effect models and other structured regression models. The course will also cover different type of algorithms to assess the posterior, based on Monte Carlo methods and on approximation. Further topics include Bayesian model and variable selection and Bayesian classification.
Requirements:
Students should be familiar with basics of Bayesian statistics.
Recommended:
- Statistical inference
- Statistical modelling
Learning outcomes:
After successfully completing the course, students will be able
- to understand Bayesian models
- to apply Bayesian modelling for appropriate data
- to interpret the results of Bayesian models
- to implement Bayesian models in standard software
Tuesday | 8.30-10.00 | M001 |
---|---|---|
Thursday | 14.15-15.45 | E216 |
- Docente: Martje Rave
- Docente: Volker Schmid
Master course
- Master Statistics & Data Science – WP45
- ESG Data Science – Elective
- Master Statistik (mit WiSo), Biostatistik – Räumliche Statistik
Tuesday | 12.15-13.45 | M109 |
---|---|---|
Thursday | 10.15-11.45 | VU104 |
- Docente: Martje Rave
- Docente: Volker Schmid
- Thursday, 12:15-14:00, Schellingstr. 3 (S) - S 005,
- Friday, 8:15-10:00, Schellingstr. 3 (S) - S 006.
- Docente: Tomasz Olma
Enrollment key: automl
- Docente: Matthias Feurer
- Docente: David Rundel
Die Veranstaltung "Programmieren mit Statistischer Software (R)" wendet sich an Studenten im Bachelor Statistik und Data Science (3. Semester). Sie baut auf die Veranstaltung "Einführung in die Statistische Software" (1. Semester) auf.
Einfuehrungsveranstaltungen
Zeit: Montag 2024-10-14, 10--12 c.t., Mittwoch 2024-10-16, 16--18 c.t.
Ort: Schellingstr. 3 (S), Raum S 003
Tutorials
Termine: Montags und Mittwochs, 2024-10-21 -- 2024-12-18; 2025-01-13 -- 2025-02-05.
Zeiten sind "s.t.".
Zeitslot |
Ort | Person |
---|---|---|
Montag 10--11 (AM) |
Ludwigstr. 33, Room 144 ("Seminar Room") |
Lisa Wimmer |
Montag 11--12 (AM) |
Ludwigstr. 33, Room 144 ("Seminar Room") | Lisa Wimmer |
Mittwoch 16--17 |
Schellingstr. 9 Raum 314 | Martin Binder |
Mittwoch 17--18 |
Schellingstr. 9 Raum 314 | Martin Binder |
Mittwoch 18--19 |
Schellingstr. 9 Raum 314 | Martin Binder |
- Docente: Martin Binder
- Docente: Lisa Wimmer
Enrollment key: table
- Docente: Matthias Feurer
Simply called "Data Privacy" on lsf if you want to register.
Einschreibeschlüssel: dataprivacy
- Docente: Jörg Drechsler
- Docente: Anna-Carolina Haensch
This course is about the theoretical foundations of deep learning.
-- Only for participants that have been officially assigned to the seminar --
- Docente: Jana Gauß
- Docente: Julius Kobialka
- Docente: Thomas Nagler
- Docente: Nicolai Palm
- Docente: David Rügamer
- Docente: Karl Schulte
- Docente: Emanuel Sommer
[w24/25] Deep Learning for Natural Language Processing (Schütze, Heumann, Aßenmacher, Liu, Sawitzki)
Schedule
- Lecture:
- Wednesday, 10-12 c.t.
- Location: Oettingenstr. 67, L 155 (Raumfinder)
- Tutorial:
- Friday, 10 - 12 c.t.
- Location: Oettingenstr. 67, B U101 (Raumfinder)
Enrollment key
- Enrollment key: hallucination
- Docente: Matthias Aßenmacher
- Docente: Christian Heumann
- Docente: Yihong Liu
- Docente: Michael Sawitzki
- Docente: Hinrich Schütze
Termine
- Vorlesung: Dienstag, 16 - 18 c.t.
- Übungen:
Mittwoch, 12 - 14 c.t. & 14 - 16 c.t.
Donnerstag, 10 - 12 c.t. & 12 - 14 c.t.
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet "stats25".
- Docente: Matthias Aßenmacher
- Docente: Benjamin Dornow
- Docente: Polina Gordienko
- Docente: Christian Heumann
- Docente: Vanessa Kleisch
- Docente: Antonio Melieni
- Docente: Franziska Reichmeier
Termine
- Vorlesung: Donnerstag, 10 - 12 c.t.
- Übungen:
Montag, 12 - 14 c.t. & 14 - 16 c.t.
Mittwoch, 10 - 12 c.t. & 12 - 14 c.t.
Einschreibeschlüssel
- Der Einschreibeschlüssel lautet "stats25".
- Docente: Matthias Aßenmacher
- Docente: Sarah Deubner
- Docente: Luzia Hanßum
- Docente: Teresa Rupprecht
- Docente: Michael Sawitzki