- Учитель: Eva Briem
- Учитель: Johanna Geuder
- Учитель: Ines Hellmann
- Учитель: Daniel Richter
- Учитель: Johanna Geuder
- Учитель: Ines Hellmann
- Учитель: Daniel Richter
- Учитель: Lucas Wange
- Учитель: Marion Cremer
- Учитель: Thomas Cremer
- Учитель: Wolfgang Enard
- Учитель: Benedikt Grothe
- Учитель: Stephan Sellmaier
- Учитель: Cora Stuhrmann
- Учитель: Angelika Böttger
- Учитель: Wolfgang Enard
- Учитель: Ines Hellmann
Content: This lecture builds on knowledge obtained in molecular biology and genetics on the Bachelor's level. It aims to deepen an understanding how the human genome was sequenced and annotated and how it is currently used to study human biology in health and disease. The following topics are addressed: The human genome project, high throughput sequencing technologies, basics in sequence analysis, gene annotation, repeats, gene expression analysis.
Qualification goals: The students will be able to describe and understand fundamental principles of human genomic research. They will acquire the basic background knowledge to apply genomic technologies.
- Учитель: Wolfgang Enard
- Учитель: Ines Hellmann
- Учитель: Julia Bechteler
- Учитель: Cordelia Bolle
- Учитель: Elsbeth Bösl
- Учитель: Wolfgang Enard
- Учитель: Marc Gottschling
- Учитель: Benedikt Grothe
- Учитель: Annika Guse
- Учитель: Ines Hellmann
- Учитель: Martin Heß
- Учитель: Kirsten Jung
- Учитель: Hans-Henning Kunz
- Учитель: Dario Leister
- Учитель: Heinrich Leonhardt
- Учитель: Daniela Meilinger
- Учитель: Jörg Meurer
- Учитель: Kärin Nickelsen
- Учитель: Reinhard Obst
- Учитель: Martin Parniske
- Учитель: Herwig Stibor
- Учитель: Marie Veranso Epse Libalah
- Учитель: Grazyna Wlodarska-Lauer
- Учитель: Jochen Wolf
- Учитель: Ming Zhao
- Учитель: Albert Zink
Computational early drug discovery in cancer; Analysing drug high-throughput screens of cancer cell lines and their deep molecular characterisation for biomarker discovery; Investigating putative drug targets with CRISPR depletion screens. Retrieving insights in the disease aetiology of cancer by analysing large patient cohorts; In this purely computational course, we will investigate pharmacogenomic data, which will be harnessed by applying biostatistical and machine learning methods.
- Учитель: Alina Arneth
- Учитель: Gülce Gökçe
- Учитель: Ines Hellmann
- Учитель: Linus Hölzel
- Учитель: Michael Menden
- Учитель: Matthias Meyer-Bender
- Учитель: Barbara Streibl
Current topics in our research field are discussed and priority is given for for students doing research course, Bachelor thesis or Master thesis; This seminar is only recommended for advanced students with an aptitude for quantitative and statistical approaches. 3 ECTS Points
Content: In the seminar, the students critically present and discuss current publications related to genomic analyses.
Qualification goals: The students will be able to extract and judge relevant information also from complex literature and to exchange information and ideas on a scientific level with experts in Genomics.
- Учитель: Wolfgang Enard
- Учитель: Ines Hellmann
- Учитель: Aleksandar Janjic
- Учитель: Philipp Janßen
- Учитель: Beate Vieth
- Учитель: Wolfgang Enard
- Учитель: Ines Hellmann
Handling statistical data is the key to success in many fields of biology. In this practical course we will
- discuss how you can use plots to make friends with your data
- discuss how you prepare publication ready plots
- repeat some basic concepts in of statistics
- apply the concepts to interpret published figures
All this will be accomplished using R and ggplot2.
The course consists of 2 parts:
1. Practical part (3ECTS, final exam is a term paper)
2. Seminar ( 3ECTS, prepare & present a plot that illustrates a data-centric question of your choosing e.g. about COVID-19 stats)
The enrolement key is: PrettyPlots
- Учитель: Ines Hellmann
- Учитель: Felix Pförtner
- Учитель: Tamina Dietl
- Учитель: Ines Hellmann
- Учитель: Felix Pförtner
- Учитель: Anita Térmeg
This seminar introduces methods for the computational analysis of quantitative high-throughput RNA sequencing data (RNA-Seq). The seminar is required for the practical course "Computational analysis of RNA-Seq" and the lecture "Human Genomics" is highly recommended.
Instructors: Ines Hellmann hellmann@bio.lmu.de
Beate Vieth vieth@bio.lmu.de
Please remember that you have to consult with one of us at least 2 days prior to the Seminar.
Talks should be 20min/person and including discussion each section should be roughly 1.5h.
The points given in each topics are hints, you may restructure it and make slight changes to the emphasis if you think it to be appropriate.
Talks are generally better if, you consider the following principles:
Less text, more pictures
Text and pictures need to be in sync
Explain everything to a level that your fellow students understand the pictures and statements you make. Don't just show things for the sake showing.
- Учитель: Ines Hellmann
- Учитель: Philipp Janßen
- Учитель: Zane Kliesmete
- Учитель: Dana Lopez Parra
- Учитель: Felix Pförtner
- Учитель: Leonhard Schaffmayer
- Учитель: Anita Térmeg