Dates:

Tuesdays, 16-18 Uhr for more detail see the Syllabus

Content:

This course first reflects on official statistics about social matters like income, living conditions, poverty measures, and unemployment. Hereby, a focus is put on the measurement of social and abstract constructs. Later, the most important voluntary and compulsory surveys conducted by official statistics are discussed, as well as recent developments in the area of processed produced external data and so-called smart statistics. Then, the module turns to business statistics with respect to national accounts, terms of trade, and indicators of economic development. 

Learning outcome:

After this course students will know the benefits as well as the difficulties trying to quantify social constructs. They are familiar with the major surveys in official statistics, their specific characteristics and their special quality standards. They understand the specific requirements as well as methodological opportunities and challenges of new data sources.

Enrollment key: EMOS

Vorlesungszeiten:

  • Mittwoch:      8:30-10:00 Uhr Hauptgebäude B 106
  • Donnerstag: 10:15-11:45 Uhr Hauptgebäude B 106

Vorlesungsinhalt:

Das Modul gibt einen Überblick über die Grundlagen und die Anwendung der wichtigsten Stichprobenverfahren.
Zunächst wird in die grundlegenden Ideen von Stichprobenziehungen eingeführt und die einfache Zufallsstichprobe und das Ziehen ohne Zurücklegen vorgestellt. Danach werden sowohl modellbasierte Verfahren als auch designbasierte Verfahren der Stichprobenziehung behandelt. Das Horwitz-Thompson Prinzip wird ausführlich besprochen, und es werden Clusterstichproben als auch geschichtete Stichproben vorgestellt. Das Modul schließt ab mit kombinierten und mehrstufigen Verfahren

Qualifikationsziele:

Die Studierenden kennen unterschiedliche Stichprobenverfahren und können je nach Anwendungsfall das passendste Stichprobenverfahren auswählen und praktisch umsetzen.

Enrollment key: sampling

Termin: Donnerstag, 16.15-18.00 in A214 (Hauptgebäude); Beginn: 24.4.2025

Die Ringvorlesung ist der zweite Bestandteil des Moduls P11: Einführung in die praktische Statistik. Sie gibt einen Überblick über verschiedene Themengebiete der Statistik, die in den spezifischen Modulen nicht entsprechend behandelt werden können.

Geplant sind

  • verschiedene Gastvorträge aus der Berufspraxis
  • einige Vorträge zur Geschichte der Statistik und der Künstlichen Intelligenz inklusive ihrer Grundlagen
  • Überblicksvorträge über die verschiedenen Spezialisierungen im Masterstudium und damit über aktuelle Teilgebiete der gegenwärtigen statistischen Forschung
  • ein Themenblock zur Ethik des statistischen Arbeitens

Einschreibeschlüssel: Ringvorlesung

Time and Dates: Thursdays, 12:15 pm to 1.45 pm, M114 (main building). We will have 5 meetings in the first half of the semester: April 24, May 8 and 22 (note the correction!),  June 5 and 12; one meeting for further mutual exchange will take place at the end of the semester (tbd.).

Overview: This course will discuss essential research techniques in statistics and data science, also preparing students for successfully participating in seminars and writing a thesis. The material presented focuses mainly on classical research techniques and a first understanding of research as a social system. Beyond this, classroom discussions will hopefully help combine the classical techniques with "modern personal knowledge management methods", which are currently also intensively disseminated by different YouTube authors, and own experience in using generative AI tools.

The course is part of the Bachelor’s programmes in Statistics and Data Science (150 major or 60 ECTS minors: `Methoden und Techniken des wissenschaftlichen Arbeitens’,  P16.1, and  WP 12.1 / WP 13.1, respectively).  Bachelor's students from the "old POs" and Master’s students are most welcome as well. A certificate can be issued for active personal attendance.

Minor students and Bachelor's degree Erasmus students who will not attend a seminar can obtain 3 ECTS via an examination/small project at the end of the course.


Enrollment key: ResTech25


Key: dcqd2025

Dates:  28.7-8.8.2025

Organisation

Veranstaltung     Termin                       Ort Person           
Vorlesung  
Mo, 12.00 - 14.00
Schellingstr. 3 (S) Raum S 001 
  Hoffmann
Vorlesung
Di, 12.00 - 14.00
Geschw.-Scholl-Pl. 1 (A) - A 120
  Hoffmann
Übung
Di, 10.00 - 12.00 
Geschw.-Scholl-Pl. 1 (A) - A 120   Gruber/Sauer
Übung
Do, 14.00 - 16.00
Geschw.-Scholl-Pl. 1 (A) - A 120
  Gruber/Sauer
Tutorium
Mo, 12.00 - 14.00  
Schellingstr. 3 (S) Raum S 001    Gorich

Einschreibeschlüssel 

LiMo_s25


Termine:

Termin Ort Person Beginn
Vorlesung Di, 08:30-10:00
Mi, 10:15-11:45
Schellingstr. 3 (S) - S 001
Schellingstr. 3 (S) - S 006
Thomas Nagler 06.05.2025
Übungsgruppe 1 Mo, 16:15-17:45 Geschw.-Scholl-Pl. 1 (B) - B 006 Jana Gauß 12.05.2025
Übungsgruppe 2 Do, 12:15-13:45 Geschw.-Scholl-Pl. 1 (B) - B 006 Jana Gauß 08.05.2025
Tutorium Fr, 12:15-13:45 Geschw.-Scholl-Pl. 1 (D) - D 209 Eugen Gorich TBA

Einschreibeschlüssel
  • Der Einschreibeschlüssel lautet: "linalg2025"

Schedule:



Person Beginning
Lecture/Exercise Tuesday, 10:15-11:45 A 213 Hoffmann/Boulesteix 29.04.25

Enrolment key
  • The enrolment key is: "Pitfalls25"
This course grants 3 ECTS and can be credited for "Selected Topics in Biostatistics", "Selected Topics in Applied Statistics" and "Statistical Literacy".

Schedule:



Person Beginning
Lecture Tuesday, 14:15-16:45 F 007 Hoffmann/Sauer/Boulesteix 29.04.25
Exercise session Friday, 14:15-15:45 F 007 Sauer 16.05.25

Enrolment key
  • The enrolment key is: "DAS25"

Dates:

DatePlacePersonStart
Lecture Tue,  12:15-13:45 Geschw.-Scholl-Pl. 1 (M) / M 101 Nagler06.05.23
Lecture/Exercise Wed, 12:15-13:45Oettingenstr. 67 / 057 Nagler/Palm 07.05.23

Enrolment
  • The enrolment key is: "rademacher"


  • Bachelor Statistik und Data Science: WP7 Ausgewählte Gebiete der statistischen Modellierung
  • Nebenfach Statistik und Data Science (60 ECTS): WP6 Einführung in die Bayes-Statistik
  • Nebenfach Statistik und Data Science (30 ECTS): WP8 Einführung in die Bayes-Statistik
  • Bachelor Informatik mit integriertem Anwendungsfach Statistik: WP40 Einführung in die Bayes-Statistik
  • Bachelor Wirtschaftsmathematik: P17 Ausgewählte Gebiete der angewandten Statistik
  • Andere Studiengänge auf Anfrage
Einschreibeschlüssel: HaroldJeffreys

Kick-off date: TBA (mid-May)

Enrollment Key: gradjitvmap

Supervisors:

  • Mina Rezaei
  • David Rügamer
  • Emanuel Sommer
  • TBD

Welcome to this introductory course on causality! This is where we gather all the material and organize the in-person sessions.

Dates [Summer Term 2025]


Lecture: Monday, 12h15 - 13h45
Lecture/Exercise (alternating): Tuesday, 08h30 - 10h00


If self-enrollment in this moodle course does not work automatically, you need to register via the backdoor ;)
--> Enrollment key: backdoor

Kick-off meeting:
Tuesday, April 29, 10 am
Seminar Room #144, Ludwigstr. 33

Final presentations:
Friday, July 18, 8 am - 6 pm
Old Library #245, Ludwigstr. 33
Bachelorseminar, geblockt am Ende des Semesters.
Vorbesprechung: TBA

Potentielle Themen: Siehe hier

Modalitäten: Siehe hier.

Bei Interesse an einer 3 ECTS Variante des Seminars können Sie eine Mail an Georg Schollmeyer schreiben

password: savage


Times and Dates: Monday, 2.15 to 3.45 pm in A119, and Tuesday, 5.30 to 7.00 pm in F007. The lectures start on 29.04.


Contents: Decision theory deals with rational decisions under uncertainty. It has high interdisciplinary importance, for example, in the analysis and support of decisions in business administration or finance (e.g. investment strategies), economics or sociology (rational choice theory), medicine (e.g. expert systems) or engineering (e.g. autonomous control). Moreover, statistical decision theory can be seen as a formal framework for choosing analysis methods (optimal tests or estimators, best classification algorithms, etc.). This general view, understanding statistics and machine learning as special cases of decision theory, plays a fundamental role in the critical analysis and problem-adequate generalization of any data-based learning procedure.

The course first discusses the general structure of decision problems, including fundamental decision principles. Then it analyzes and characterizes the Bayes and minimax criteria as extreme poles to deal with (state) uncertainty and develops modern alternatives in the context of complex uncertainty (ambiguity).

Curricular Embedding: 6 ECTS, Master's programme in Statistics and Data Science: "Narrow electice (2 out of 3)" in the Methodology and Modelling track, "wider elective" in the Social Statistics and Data Science and the Econometrics tracks, "general elective" for all tracks; elective in the Master's programme Versicherungs- und Finanzmathematik; options for other programmes upon request. 


Schedule:

Time Lecturer Begin

Lecture

Tuesday, 12:15 - 13:45
Prof. Dr. Heumann
29.04.2025

Exercise course     
(Group 1)

Wednesday, 08:15 - 09:45 Sapargali, Garces Arias 
30.04.2025

Exercise course
(Group 2)

Wednesday, 14:15 - 15:45  
Sapargali, Garces Arias 
30.04.2025
Tutorial Thursday, 08:15 - 09:45
Jai
24.04.2025

Lecture

Friday, 10:15 - 11:45
Prof. Dr. Heumann
25.04.2025
start of lecture



Enrollment Key
  • The enrollment key is "stat_inf_s25"
Note: the course is creditable for "Mathematische Statistik, M.Sc. Mathematik WP5 (PO2021)".

Schedule

                Type                       Date            Location             Start     
Lecture

    Mondays

 12:15-14:00

    Geschw.-Scholl-Pl. 1 (A) / A 022      


 23.04.2025
Lecture/Tutorial

    Fridays

   12:15-14:00

    Geschw.-Scholl-Pl. 1 (E) / E 216       

 

 25.07.2025

Enrolment Key:  ectheory25



In the seminar "Foundation Models in e-Health" we will delve into the rapidly evolving landscape of AI, focusing on the practical use and implementation of foundation models for e-health applications. These models, which serve as the backbone for a wide range of AI applications, offer powerful tools for tackling complex problems across various domains. Throughout the seminar, we'll explore key techniques for fine-tuning and adapting these models to specific e-health tasks, ensuring participants gain a solid understanding of how to leverage their capabilities effectively.

The seminar is designed to bridge the gap between theory and practice, providing master’s students with hands-on experience and actionable insights. We will examine the real-world challenges and do case studies in medical domain.

Recommended prerequisites: Deep learning; Python, PyTorch, TensorFlow, We would also hold the seminar in English and also allow students from other courses (especially DS students)

Organization:

  • Enroll key: s25_seminar_ehealth
  • First meeting: Friday, 11:00-12:30 am,  April. 18th at Ludwig str. 33, Seminar Room (144)
  • Weekly meeting:  Friday, 11:00-12:30 am
  • [Zoom](link)
  • A first meeting will occur at the beginning of the semester (scheduled in agreement with the participants), during which the seminar topics will be briefly introduced and assigned to the participants.
  • Seminar type: Block-type and in-person
  • Language: The seminar will be held in English


Einschreibeschlüssel: StoSta25

Termine
Termine
Vorlesung:
  Di  (S 003 Schellingstr), & Do (023 - Kaulbachstr 37),  je 12-14 

Übung
Mi 12-14 (E 004 HGB), 
Mi 14 -16 (E 004 HGB),
Do 14-16 (E 004 HGB).

Enrolment key: RegCor25

Format: In-person lectures and lab sessions

Dates & Rooms:
Wed 10-12 @ Main Building A 017
Thu 14-16 @ Schellingstr. 3 (S) - S 001

Grading: Oral exams at the end of the semester.

Advanced Statistical Programming using R

The enrolment key / password for the course is: StatProgSS25.

If you have questions please contact statprog@stat.uni-muenchen.de.

The course will be taught in English, more information can be found in the course itself.

This course will provide a comprehensive introduction to univariate time series analysis, covering key concepts such as stochastic processes, trend modeling, and linear filters. We will also model and forecast time series using both ARIMA and GARCH processes, focusing on estimation techniques and practical applications. 

Enrollment Key (Einschreibeschlüssel): UTSA_2025

Format
90 min live lecture + 90 min live exercise

Lecture
  • Time: Monday 08:30 - 10:00 am.
  • Location: F 007.
Exercise
  • Time: Friday 10:15 - 11:45 am.
  • Location: F 007.

Enrollment key
  • Please only enroll if you want to ACTIVELY participate, you will be automatically unenrolled after 1 month of inactivity. The enrollment key is: IML-2025_advml
Contents
This course is an introduction into concepts and methods of machine learning interpretability and their implementation with R or python. It counts as the module "Advanced Machine Learning". The course focuses on model-agnostic methods for tabular data and in parts is close to the course on our website. Course topics include a general introduction into questions and concepts of interpretable ML, inherently interpretable ML models, global and local feature effect methods, functional decompositions, Shapley values, feature importance methods, regional feature effect methods and local as well as counterfactual explanations.

Format
Inverted classroom with 90 min live lecture recap + 90 min live exercise recap

Class
  • Time: Thursday 12:15 - 13:45 h.
  • Location: B 106.
Exercise
  • Time: Wednesday 10:15 - 11:45 h.
  • Location: D 209.

Enrollment key
  • The enrollment key is: "I2ML".

In diesem Wahlpflichtkurs (5. Semester) lernen Sie die Grundlagen der Arbeit mit Python. Während des Kurses arbeit Sie mit der Konsole, IDE und Jupyter Notebooks und lernen folgende Themen:
  • Grundlagen der Programmierung in Python (Datentypen, Datenstrukturen,  Kontrollstrukturen, Fehlerbehandlung, Funktionen, OOP)
  • Datenverarbeitung in Python (Numpy, Pandas)
  • Visualisierung in Python (Matplotlib, Seaborn, Pandas)
  • Machine Learning und Statistik in Python (scikit-learn, statsmodels, scipy)
  • Fortgeschrittene Programmiertechniken (PEP8, unit tests, Cython, Joblib)

Einschreibeschlüssel: Python

Vorlesung: Dienstags 9:30 (ab Dienstag, dem 27.04)

Short Description: You will learn how to tackle practical challenges in ML using R. Topics include an introduction to an ML toolbox in R, (advanced) tuning techniques, custom ML pipelines, classifier calibration, handling class imbalances, ML benchmark experiments with hypothesis testing, ML model ensembling/stacking, and ML interpretability. Sessions consist of brief methodological overviews followed by hands-on exercises, requiring laptops for full engagement.

Prerequisite: To participate in this lecture, you must have completed and passed the courses:

  • Introduction to Machine Learning (I2ML)
  • Programming with Statistical Software (R), ideally with a good grade as good knowledge of R is required

Kick-off: Wednesday, April, 23rd from 09:00 - 12:00 (s.t.) (check Moodle for up-to-date information)

Enrolment key: appml25



Teilnehmende dieses BA-Seminars werden basierend auf der offiziellen Seminareinteilung von Dr. Schollmeyer dem Moodle-Kurs hinzugefügt.

Wichtige Informationen zur Orientierung sind in diesem Dokument zusammengefasst. 

Bei Fragen wenden Sie sich bitte an ludwig.bothmann@lmu.de


Kick-off
: 10.04.25, 12.15-13.45 Uhr, Alte Bibliothek, Ludwigstr. 33, Raum 245

Meeting (Kick-off): April, 28th (10:00 - 12:00 - Room 144, Ludwigstr. 33)

Schedule:
Tuesday 16-18 Geschw.-Scholl-Platz 1 (A) - M 110
Thursday 14-16 Geschw.-Scholl-Platz 1 (A) - M 105

Enrolment key:
CIN25

The course is an introduction to widely used algorithms and data structures, focusing on those most useful in data science. Students are introduced to how data is represented in memory, from individual characters and numbers to complex structures representing hierarchies and graphs. The standard analytical tools used to determine an algorithm's efficiency and the accuracy of its results are also covered.

This course can be taken as an elective module "WP1" and is recommended for the 6th semester (4th semester if you are motivated) in the Bachelor's program. Note that this course can not be credited towards the Master's degree. It targets students with an interest in programming, computer science, and algorithmic thinking. If you liked ProgR, we think you will also like this course.

Schedule:

 Day / Time
 Room
 Lecturer Dates
Lecture Tuesday
 14:00--16:00 c.t.
 Schellingstr. 3 (S) - S 005
 Bischl 2025-04-29 --
 2025-07-22
Lct. / Ex.
 Wednesday
 12:00--14:00 c.t.
 Schellingstr. 3 (S) - S 005
 Binder 2025-04-23 --
 2025-07-23

Exam:
Format: written, on paper, in-person, 2 hrs
Credits: 6 ECTS

Enrolment key
  • The enrolment key is: AL_GODS_25

The course Analysis of high-dimensional biological data (formerly Statistische Methoden in Genomik und Proteomik / Statistical methods for biological high-throughput data) will cover important statistical methods and concepts for the analysis of high-dimensional biological high-throughput data. We will focus on bulk RNA-Seq, single-cell RNA-Seq, proteomic, metabolic, and especially microbiome data such as 16S rRNA and other amplicon data. 


Schedule:

Date and Time Place Person Beginn
Lecture Wed, 14:00 - 16:00 Prof.-Huber-Pl. 2 (V) - LEHRTURM-VU107
C.L Müller 23.04.2025
Exercises Mo, 10:00 - 12:00
(bi-weekly)
Geschw.-Scholl-Pl. 1 (M) - M 203 Olayo-Alarcon 05.05.2025

Enrollment key:
HighDimBio25

Description:

In the rapidly evolving field of biomedical research, generating large-scale high-dimensional datasets has become commonplace. This, in turn, has motivated the development and application of new statistical and machine-learning methods to gain valuable insights from such data. In this seminar, students will learn about the most recent advances in data science and statistics aimed at analyzing large-scale biomedical data. The topics covered include (but are not limited to): Compositional data analysis, Variable selection, Network inference and analysis, Self-supervised deep learning, Selective inference, High-dimensional clustering, etc.

Organization:

  • A first meeting will occur at the beginning of the semester (scheduled in agreement with the participants), where the seminar topics are briefly introduced and assigned to the participants.
  • Seminar type: Block-type and in-person
  • Language: The seminar will be held in English
  • Enrollment to the seminar will be done by the lecturer after seminar assignment




 Date & Time Place Person
Lecture    
 Mo., 10:15 - 11:45 
 S 001 
 Rügamer   
Lecture    
 Di.,  10:15 - 11:45
 S 006  
 Rügamer   
Exercise
 Th., 12:15 - 13:45
 E 004 
 Kobialka/Schulte 
Tutorial
 Fr., 08:15 - 09:45 
 B 106
 Runnwerth

Lecture: David Rügamer
Exercise: Julius Kobialka, Rickmer Schulte
Tutorial: Kilian Runnwerth


Enrollment Key: StatMod101


  • Note: Due to labor day (public holiday), 
    • the first lab session will be on May 8
    • the introductory lectures will be available only as videos (see table of content)

Instructors:

Time:

  • Lecture: Every Monday 16:00 - 18:00 (c.t.)  -> Room: Geschw.-Scholl-Pl. 1 (M) / M 105
  • Labs: Every Thursday 10:00 - 12:00 (c.t.) -> Room: Geschw.-Scholl-Pl. 1 (M) - M 014

Start:

  • Note: Due to labor day (public holiday), 
    • the first lab session will be on May 8
    • the first lecture session will be on May 5

Enrollment Key:

  • Singularity

The field of Automated Machine Learning is thriving, and researchers make tremendous progress in democratizing machine learning. An important new model class is the class of foundation models, and we will discuss how AutoML techniques can be applied to such models, and what these models offer for AutoML. Of course, the seminar will also cover other recent advances, such as human-in-the-loop AutoML.

More concretely, we will discuss topics along the lines of:

  1. How can we use AutoML to tune the hyperparameters of foundation models?
  2. Can we use foundation models in AutoML?
  3. How can we incorporate human experts in the AutoML process?

The following papers are samples of the seminar content:

  1. https://www.nature.com/articles/s41586-024-08328-6
  2. https://proceedings.neurips.cc/paper_files/paper/2022/hash/cf6501108fced72ee5c47e2151c4e153-Abstract-Conference.html
  3. https://openreview.net/forum?id=VTTL6x0z6V
  4. https://arxiv.org/abs/2412.07820
Enrollment to the seminar will be done by the lecturer after seminar assignment by Georg Schollmeyer.
Time: Tuesday, 4PM
Location: Seminar room LU33
Kickoff: April 29th

Description

This course provides a rigorous and theoretical exploration of dynamical systems in deep learning, building on courses on deep learning, probability theory, and optimization. The focus is on mathematical foundations and advanced concepts such as ordinary and stochastic differential equations, sampling-based inference, transport methods, and diffusion processes. Key topics include Neural ODEs, Langevin dynamics, optimal transport, and score-based generative models. Additionally, the seminar is expected to cover more recent developments like Schrödinger bridges, Hamiltonian Monte Carlo, and physics-informed neural networks.

Participation

Only via invite after applying in the seminar registration phase

Recommended prerequisite

  • Deep Learning Course
  • (Optimization)
  • Solid Background in Probability Theory

Statistik II für Statistiker: Wahrscheinlichkeitstheoretische Grundlagen der Statistik


TerminHörsaalDozent
VorlesungMo 10-12
Volker Schmid
Do 9–12
Übung Gruppe 1Mo 14–16
N.N.
Übung Gruppe 2Mi 8–10
TutoriumDi 18-20
Michael Kobl

Einschreibeschlüssel: Bernoulli

Person: Dr. Cornelia Oberhauser

SAS course as a 5-day block course during the semester break

Dates:

Day

Time
Room
Mon 17.03.2025
Lecture 9:15 - approx. 12:15
online via Zoom

Exercise
13:15 - 17:00
online via Zoom
Tue 18.03.2025
Lecture
9:15 - approx. 12:15 online via Zoom
Exercise
13:15 - 17:00 online via Zoom
Thu 20.03.2025
Lecture
9:15 - approx. 12:15 online via Zoom
Exercise
13:15 - 17:00 online via Zoom
Mon 24.03.2025
Lecture
9:15 - approx. 12:15 online via Zoom
Exercise
13:15 - 17:00 online via Zoom
Tue 25.03.2025
Lecture
9:15 - approx. 12:15 online via Zoom
Exercise
13:15 - 17:00 online via Zoom

Enrolment key

  • The enrolment key is: ‘saskurs2025’

Guest key

  • The guest key is: ‘saskurs2025’

Termine

  • Wiederholungsübung: tbd

Einschreibeschlüssel

  • Der Einschreibeschlüssel lautet "stats25wdh".


Termine

  • Vorlesung: Dienstag, 16 - 18 c.t.
  • Übungen (Statistik II): 
    Mittwoch, 12 - 14 c.t. & 14 - 16 c.t.
    Donnerstag, 18 - 20 s.t.
    Freitag, 10 - 12 c.t.
  • Übung (Statistik I):
    Montag, 10 - 12 c.t.

Einschreibeschlüssel

  • Der Einschreibeschlüssel lautet "2025wiwistat".